NuFACT 2023

Non-Standard Neutrino Interactions Mediated by Light Scalars

Sumit Ghosh Korea Institute for Advanced Study <u>ghosh@kias.re.kr</u>

based on: arXiv 2309.XXXXX (appears soon)

On behalf of the collaboration with: Bhaskar Dutta, Tianjun Li, Kevin Kelly, Adrian Thompson, and Ankur Verma.

https://neutrino.syr.edu/research/neutrino-oscillations/

2

- SM IS NOT COMPLETE
- Neutrino mass and oscillations is a well known phenomenon. However, the neutrino mass generation mechanism remains unknown.
- New physics in neutrino sector can give rise to non-standard interactions of neutrinos.
 - So far, no experimental evidence for NSI of neutrinos, but if exist, directly indicate new physics beyond SM- well motivated from a phenomenological point of view.

https://neutrino.physics.iastate.edu/project/dune

WHAT DO WE DO

- We consider light scalar mediated NSI and want to study it's effects on neutrino oscillation specifically on CP measurements at neutrino oscillation experiment such as DUNE.
- We want to find sensitivity on NSI parameters, considering all at the same time, for CP measurements at DUNE.
- Finally we want to translate the NSI parameters into sensitivity on the parameter space for light scalar models and compare with existing constraints.

SCALAR NSI

• Consider interactions between neutrinos and fermions present inside matter mediated by a light scalar.

$$\mathscr{L}_{\phi'} = \bar{\nu}(i\gamma^{\mu}\partial_{\mu} - m_{\nu})\nu - y_{\nu}\bar{\nu}\nu\phi' - y_{f}\bar{f}f\phi' - \frac{1}{2}(\partial_{\mu}\phi')^{2} - \frac{1}{2}m_{\phi'}^{2}{\phi'}^{2}$$

• The effect of ϕ' on neutrino propagation is equivalent to changing the neutrino mass. Calculating e.o.m. of neutrino,

$$m_{\nu} \rightarrow m_{\nu}' = m_{\nu} + \delta m_{\nu}; \qquad \delta m_{\nu} = y_{\nu} \phi$$

• This correction to neutrino mass modifies the neutrino oscillation Hamiltonian.

$$H_s \simeq E_\nu + \frac{m_\nu^2}{2E_\nu} + V_{SI} + \frac{m_\nu}{E_\nu} \delta m_\nu$$

PARAMETRIZATION

• The ϕ' is induced by fermion matter density. Calculating e.o.m. of ϕ' , we estimate mass correction.

$$\delta m_{\nu} \simeq \frac{y_{\nu} y_f n_f}{m_{\phi'}^2}; \qquad \text{for } q^2 \ll m_{\phi'}^2$$

• We parametrize in terms of dimensionless quantities $\eta_{\alpha\beta}$

$$\delta m_{\nu} \equiv \sqrt{|\Delta m_{31}^2|} \begin{pmatrix} \eta_{ee} & \eta_{e\mu} e^{i\phi_{e\mu}} & \eta_{e\tau} e^{i\phi_{e\tau}} \\ \eta_{e\mu} e^{-i\phi_{e\mu}} & \eta_{\mu\mu} & \eta_{\mu\tau} e^{i\phi_{\mu\tau}} \\ \eta_{e\tau} e^{-i\phi_{e\tau}} & \eta_{\mu\tau} e^{-i\phi_{\mu\tau}} & \eta_{\tau\tau} \end{pmatrix}$$

• The model parameters are related to the $\eta_{\alpha\beta}$'s

$$\sqrt{|y_f y_{\alpha\beta}|} = \left(2.17 \cdot 10^{-4} \times |\eta_{\alpha\beta}| \left(\frac{|\Delta m_{31}^2|}{\text{eV}^2}\right)^{-1/2} \times \left(\frac{m_{\phi}}{\text{keV}}\right)^2 \times \left(\frac{\text{g/cm}^3}{\rho}\right)\right)^{1/2}$$

PROPERTIES OF SCALAR NSI

- In the presence of scalar NSI, the oscillation probabilities are sensitive to absolute mass scale of neutrinos.
 - look at the propagation of $\psi_{\alpha,\beta}(t) = \langle \nu_{\beta} | \nu_{\alpha}(t) \rangle$ for SI

$$i\frac{d}{dx}\psi_{\alpha\beta}(x) = \left(E_{\nu} + V_{NC}\right)\psi_{\alpha\beta}(x) + \sum_{\eta}\left(\sum_{k}U_{\beta k}\frac{m_{k}^{2}}{2E_{\nu}}U_{\eta k}^{*} + \delta_{\beta\eta}\delta_{\beta e}V_{CC}\right)\psi_{\alpha\eta}(x)$$

- we can subtract an identity matrix proportional to the lightest neutrino mass and write in terms of mass square quantities Δm_{k1}^2 .

- in presence of scalar NSI, even after subtraction we have terms of the form $m\delta m$.

$$i\frac{d}{dx}\psi_{\alpha\beta}(x) = \left(E_{\nu} + \frac{m_1^2}{2E_{\nu}}V_{NC}\right)\psi_{\alpha\beta}(x) + \sum_{\eta}\left(\sum_k U_{\beta k}\left(\frac{\Delta m_k^2}{2E_{\nu}} + \frac{m_k\delta m_k}{E_{\nu}}\right)U_{\eta k}^* + \delta_{\beta\eta}\delta_{\beta e}V_{CC}\right)\psi_{\alpha\eta}(x)$$

PROPERTIES OF SCALAR NSI

- The scalar NSI can have unphysical phases that have physical consequences on the neutrino oscillations.
 - neutrino mass matrix can be diagonalized using $V = P_l^{\dagger} U_{PMNS} P_{\nu}$, which is coming from the leptonic charged current weak interaction current.

$$\mathscr{L}_{cc} = -\frac{g}{\sqrt{2}} \bar{l}_L \gamma^\mu V \nu_L W^-_\mu + h \cdot c \,.$$

- here P_l and P_{ν} are unphysical diagonal rephrasing matrices which can be rotated away.
- in presence of scalar NSI δm_{ν} , we can not rotate away the unphysical matrix P_l .
- these unphysical phases contribute to the phases of NSI parameters and can affect the measurements of CP phase at oscillation experiments.

AN EXAMPLE MODEL

• Light scalar mediator model: we propose one.

- by extending the SM scalar sector by:

 $H_1 \sim (2,1/2), \quad H_2 \sim (2,1/2), \quad \phi \sim (1,0), \quad \Delta \sim (3,1) \ .$

-we consider $\langle H_1 \rangle = v_1/\sqrt{2}, \ \langle H_2 \rangle = 0, \ \langle \phi \rangle = v_{\phi}/\sqrt{2}, \ \langle \Delta \rangle = v_{\Delta}/\sqrt{2}$.

- mixing in the scalar sector give rise to one light scalar, ϕ' , with mass ≤ 1 keV.
- Yukawa term $\bar{l}_{L_i}^{c}(y')_{ij}i\sigma_2\Delta l'_{L_i}$ and scalar mixing give NSI of neutrinos with the light scalar.
- fermions interactions with H_2 give rise to FCNC at tree level and scalar mixing then gives fermions interactions with the light scalar .

- thus all possible NSI terms with SM fermions mediated by the light scalar arise from:

$$-\mathscr{L}_{Yukawa} \subset \bar{\nu}_i^c(y_{\nu})_{ij}\nu_j\phi' + \bar{f}_i(y_f)_{ij}f_j\phi'$$

DVNE EXPERIMENT

- Scalar mediated NSI can impact the CP violation measurement at DUNE.
 - we measure the effect and find the sensitivity of DUNE on NSI parameters.
 - we take the baseline length 1300 kms.
 - we consider an exposure of 7 years in equal neutrino and antineutrino mode.

OSCILLATION PROBABILITY

Normal Ordering, L = 1300 km, $\rho = 2.84$ g cm⁻³, $m_1 = 0$

Normal Ordering, $E_{\nu} = 2.5 \text{ GeV}$

DUNE SENSITIVITY: NO

DUNE SENSITIVITY: 10

DEPENDENCE ON LIGHTEST m_{ν}

BOUNDS ON PARAMETER SPACE

Normal Ordering

Normal Ordering

BOUNDS ON PARAMETER SPACE

Inverted Ordering

Inverted Ordering

OUR WORK IN A NUTSHELL

- Light Scalar-Mediated NSI appears as a correction to the neutrino mass term.
- Unphysical phases have physical consequences on neutrino oscillations.
- CP measurements at Neutrino oscillations experiments such as DUNE can be impacted by the presence of light scalar mediated NSI.
- We measure the DUNE sensitivity on NSI parameters considering all the parameters at the same time.
- NSI parameters can be translated into sensitivity on the parameter space for light scalars model and compared with existing constraints.

EXTRAPAGE

TRUEVALUES

MO	Parameters	True Values				
	$sin^2(heta_{12})$	0.318				
	$sin^2(heta_{13})$	0.022				
NO	$sin^2(heta_{23})$	0.574				
	δ_{CP}	1.08π				
	Δm^2_{21}	$7.506 \times 10^{-5} \mathrm{eV}^2$				
	Δm^2_{31}	$2.55 imes 10^{-3} \mathrm{eV}^2$				
	$sin^2(heta_{12})$	0.304				
	$sin^2(heta_{13})$	0.022				
IO	$sin^2(heta_{23})$	0.578				
	δ_{CP}	1.58π				
	Δm^2_{21}	$7.506 \times 10^{-5} \mathrm{eV}^2$				
	Δm^2_{31}	$2.45 \times 10^{-3} \mathrm{eV}^2$				

 Table 1: Oscillation parameters used for DUNE analysis

SUMMARY

$m_{ m lightest}~=0{ m eV}$			$m_{ m lightest}~=0.05 { m eV}$			$m_{ m lightest}~=0.1{ m eV}$				
MO	NSI	$\eta_{lphaeta}$		MO	NSI	$\eta_{lphaeta}$		MO	NSI	$\eta_{lphaeta}$
NO	η_{ee}	[-0.167, 0.07]			η_{ee}	[-0.016, 0.005]			η_{ee}	[-0.0083, 0.0027]
	$\mid\eta_{\mu\mu}\mid$	[-0.11, 0.064]			$\eta_{\mu\mu}$	[-0.026, 0.013]			$\eta_{\mu\mu}$	$\left[-0.015, 0.008 ight]$
	$\eta_{ au au}$	[-0.12, 0.09]	NO	$\eta_{ au au}$	[-0.023, 0.013]		NO	$\eta_{ au au}$	[0127, 0.0068]	
	$\eta_{e\mu}$	0.08		$\eta_{e\mu}$	0.012			$\eta_{e\mu}$	0.006	
	$\eta_{e au}$	0.073			$\eta_{e au}$	0.013			$\eta_{e au}$	0.007
	$\mid\eta_{\mu au}\mid$	0.083			$\left \hspace{.1cm} \eta_{\mu au} \hspace{.1cm} \right $	0.016			$\eta_{\mu au}$	0.009
ΙΟ	η_{ee}	[-0.023, 0.023]		η_{ee}	[-0.017, 0.016]			η_{ee}	[-0.01, 0.01]	
	$\eta_{\mu\mu}$	[-0.0075, 0.008]			$\left \begin{array}{c} \eta_{\mu\mu} \end{array} \right $	[-0.003, 0.003]			$\eta_{\mu\mu}$	[-0.0018, 0.002]
	$\eta_{ au au}$	$\left[-0.0089, 0.0071 ight]$	IO	$\left \eta_{ au au} \right $	$\left \left[-0.0042, 0.0031 \right] \right $		IO	$\eta_{ au au}$	[-0.0024, 0.0018]	
	$\eta_{e\mu}$	0.018		$\eta_{e\mu}$	0.01			$\eta_{e\mu}$	0.0064	
	$\eta_{e au}$	0.018			$\eta_{e au}$	0.01			$\eta_{e au}$	0.0067
	$\eta_{\mu au}$	0.037			$\eta_{\mu au}$	0.015			$\eta_{\mu au}$	0.0087

Table 2: Summary of Expected Sensitivities of DUNE to scalar NSI parameters $\eta_{\alpha\beta}$