Update on Bodek-Yang Model

Arie Bodek University of Rochester Un-ki Yang Seoul National University

NuFACT 2023 Workshop, Seoul, August 21-26, 2023

Bodek-Yang Model

- Bodek-Yang model: describe DIS cross section in all Q² regions
- Challenges in e/μ-N DIS
 - High x PDFs at low Q²
 - Resonance region overlapped with a DIS contribution
 - Hard to extrapolate DIS contribution to low Q² region from high Q² data due to non-perturbative QCD effects

- A model in terms of quark-parton model (easy to convert e/µ scattering to v scattering)
- Understanding of high x PDFs at low Q²? wealthy SLAC, JLAB data.
- Understanding of resonance scattering in terms of quark-parton model? (duality works, many studies by JLAB)

Lessons from previous QCD studies

- NLO & NNLO analyses with DIS data: PRL 82, 2467 (1999), Eur. Phys. J. C13, 241 (2000) by Bodek and Yang
 - Kinematic higher twist (target mass) effects are large
 - Resonance region can be well described (duality works).
 - Most of dynamic higher twist corrections (in NLO analysis) are similar to missing NNLO higher order terms.
- NNLO pQCD+TM with NNLO PDFs can describe the nonperturbative QCD effects at low Q²
- Thus, we reverse the approach to build the model:
 - Use effective LO PDFs with a news caling variable, ξw to absorb target mass, higher twist, missing QCD higher order

$$x_{Bj} = \frac{Q^2}{2Mn} \implies \xi_W = \frac{Q^2 + B}{\{M \nu [1 + \sqrt{(1 + Q^2 / \nu^2)}] + A\}}$$

$$F_2(x,Q^2) \rightarrow \frac{Q^2}{Q^2 + C} F_2(X_w,Q^2)$$

NLO vs NNLO

Studies of higher twist and higher order effects in NLO and NNLO QCD analysis of lepton-nucleon scattering data on F_2 and $R = \sigma_L / \sigma_T$

U.K. Yang & A. Bodek

The European Physical Journal C - Particles and Fields 13, 241–245 (2000) Cite this article

Very high x and low Q² data

Parton Distributions, d/u, and Higher Twist Effects at High x

U. K. Yang and A. Bodek Phys. Rev. Lett. **82**, 2467 – Published 22 March 1999

 Very high x and low Q² data is well described by the pQCD+TM+HT
 Extraction of the high x PDF is promising (1999)

Bodek-Yang Effective LO PDFs Model

1. Start with GRV LO PDF ($Q_{min}^2=0.80$) 2. Replace x_{bi} with a new scaling, ξ_w 3. Multiply all PDFs by K factors for photo prod. limit and higher twist $[\sigma(\gamma) = 4\pi\alpha/Q^2 * F_2(x, Q^2)]$ Ksea = $Q^2/[Q^2+Csea]$ Kval = $[1 - G_D^2 (Q^2)]$ * $[Q^2+C_{2V}] / [Q^2+C_{1V}]$ motivated by Adler Sum rule where G_D^2 (Q²) = 1/ [1+Q²/0.71]² 4. Freeze the evolution at $Q^2 = Q^2_{min}$ - $F_2(x, Q^2 < 0.8) = K(Q^2) * F_2(\xi w, Q^2 = 0.8)$ 5. Fit all DIS $F_2(p/D)$ data: SLAC/BCDMS/NMC/HERA data

Nucl.Phys.B 139 (2005)

Photo-production data

- Additional K^{LW} factor for valence quarks:
 - Kval = $K^{LW}*[1-G_{D}^{2}(Q^{2})]$ * $[Q^{2}+C_{2V}]/[Q^{2}+C_{1V}]$
 - $\mathsf{K}^{\mathsf{LW}} = (\nu^2 + \mathsf{C}^{\nu})/\nu^2$

This makes a duality work all the way down to Q²=0 (for charged leptons)

Photo-production data with v(Pbeam)>1 GeV included in the fitting

Predictions for F_L are in good agreement
 (not included in the fit) duality works

$$F_L = F_2 (1 + 4M^2 x^2 / Q^2) \frac{R}{(1+R)}$$

Neutrino cross sections

- Effective LO model with ξw describe all DIS and resonance
 F₂ data as well as photo-production data (Q²=0 limit):
 vector contribution works well
- Neutrino Scattering:
 - Effective LO model works for xF₃?
 - Nuclear effects using e/μ scattering data
 - Axial vector contribution at low Q²?
 - Use R=R₁₉₉₈ to get 2xF₁
 - Implement charm mass effect through ξ w slow rescaling algorithm for F₂, 2xF₁, and xF₃

Effective LO model for xF₃?

- Scaling variable, ξw absorbs higher order effect for F₂, but the higher order effects for F₂ and xF₃ are not the same
- Use NLO QCD to get double ratio

 $H(x) = \frac{xF_3(\text{NLO})}{xF_3(\text{LO})} / \frac{F_2(\text{NLO})}{F_2(\text{LO})}$

not 1 but almost indep. of Q²

Enhance anti-neutrino cross section by 3%

Axial Vector Structure Functions

- At high Q², vector and axial vector contribution are same, but not at low Q²
- The non-zero PCAC component of F₂^{axial} at low Q²: mostly longitudinal

$$2xF_1^{axial} = 2xF_1^{vector}$$

 \succ K factors for axial contributions ($F_2 \& xF_3$): type II

$$K_{sea}^{vector} = \frac{Q^2}{Q^2 + C} \bowtie K_{sea}^{axial} = \frac{Q^2 + 0.55C_{sea}^{axial}}{Q^2 + C_{sea}^{axial}} \qquad K_{val}^{axial} = \frac{Q^2 + 0.1C_{val}^{axial}}{Q^2 + C_{val}^{axial}}$$

where $C_{sea}^{axial} = 0.75$, $C_{val}^{axial} = 0.18$

Comparison with CCFR(Fe), CHORUS (Pb) data

Total cross sections

BY(DIS, W>1.4) + Q.E. + Resonance

13

Summary & Discussions

- BY Effective LO model with ξw describe all e/µ DIS and resonance data as well as photo-production data (down to Q²=0): provide a good reference for vector SF for neutrino cross section
- BY(DIS) type II model (axial=PCAC) provide a good reference for both neutrino and anti-neutrino cross sections (W>1.8). Low energy neutrino experiments can normalize their data to our model to extract their flux
- Model also works well down to W=1.4 GeV on average (duality), thus providing overlap with resonance models

Nuclear Effects: use e/µ data

SLAC nuclear density Fit

Low x HERA and NMC data

Fit works at low x