Tests and Assembly of the T2K Near Detector Upgrade

Dung Nguyen, VNU-HUS, Hanoi, Vietnam

on behalf of T2K collaboration

NuFACT23, 21-26 August 2023, Seoul, South Korea

August 22, 2023

Email: nguyenthidung.hus@vnu.edu.vn

Dung Nguyen (VNU-HUS)

Tests and Assembly of ND280 upgrade

Content

T2K Experiment

Tests and assembly of the T2K ND280 Upgrade

3 ND280 upgrade physics studies

4 Conclusion

T2K experiment

Main goals

- Discovered appearance of $u_{\mu} \rightarrow \nu_{e} \ \theta_{13}(2013), \ \delta_{CP}$
- Measurement of $u_{\mu}
 ightarrow
 u_{\mu} \ heta_{23}, \ \Delta m^2_{32}$

T2K upgrade \rightarrow 3 σ C.L on δ_{CP}

Long-baseline (295 km)

 ν experiment in Japan
 from J-PARC(Tokai) to
 Super-K (Kamioka)

p (30GeV) + graphite → π → μ+ ν_μ(600*MeV*) - high intensity
 The MR beam power: from 500kW to 700kW(2022) and 1.3 MW (2028), 30 × 10²⁰POT (Proton On Target/year)

Near Detector

Far Detector

- **Super-K** is 2.5° off the beam's axis to achieve narrow band beam peaked at oscillation maximum (0.6GeV)
- Muon and electron are well-separated \rightarrow identify ν_{μ}/ν_{e} with high purity

Role of Near Detectors

- Near Detector complex is 280m downstream of neutrino production point (target).
- Measurement of the interaction rates before oscillation
- Measurement of neutrino nucleus cross-section in several channels
- Strongly constrain the expected rates at Super-K for precision oscillation analyses

good acceptance for forward tracks

What ND280 cannot do?

Dung Nguyen (VNU-HUS)

Motivation of T2K near detector upgrade

- $\bullet\,$ Control the systematic uncertainties associated with the ν production and detection
 - \uparrow POT in T2K-II goal $\rightarrow \downarrow$ Stat. error
 - \downarrow sys. error $\nu_e(\bar{\nu}_e)$ event candidates
 - Near future: Suppression of sys. error becomes more important

Parameter	Current ND280 (%)	Upgrade ND280 (%)
SK flux normalisation	3.1	2.4
$(0.6 < E_v < 0.7 \text{ GeV})$		
MA_{QE} (GeV/c ²)	2.6	1.8
v_{μ} 2p2h normalisation	9.5	5.9
2p2h shape on Carbon	15.6	9.4
MA_{RES} (GeV/c ²)	1.8	1.2
Final State Interaction (π absorption)	6.5	3.4

• The systematic error can be reduced by about 30% in the ND280 upgrade configuration

T2K Upgrade plan

• T2K upgrade near detector: expected \downarrow systematic uncertainty to 4% Beam upgrade up to accumulate enough POT ~ 1.3 MW \rightarrow to exclude sin $\delta_{CP} = 0$ at 3σ

See Y. Sato and C. Naseby's talk

The upgrade ND280 begin collecting neutrino data in November 2023

ND280 upgrade

$POD \rightarrow Super-FGD$, 2 HA-TPCs, 6 ToF planes

Super-FGD

 \rightarrow improve the reconstruction hadronic part and low momentum leptons

2 HA-TPCs

 \rightarrow improve the reconstruction high angle leptons

6 ToF planes

 \rightarrow reduce background from the outside of SuperFGD

10 / 36

Dung Nguyen (VNU-HUS)

Tests and Assembly of ND280 upgrade

Efficiencies of ND280 upgrade

+ 6 TOF planes surrounding the new tracker

Efficiencies of ND280 upgrade:

 4π acceptance, high efficency of particle low momentum.

Efficiency to select CCOpi events

SuperFGD

- 2 million cubes 1×1×1 cm³ plastic scintillator cubes with 3 holes
- Fully active target (200 x 180 x 60 cm³)
- Active mass 2,2 tons
- ullet \sim 60 000 readout WLS and MPPC
- 3D reconstruction and high segmentation, 4π acceptance
- Good tracking, timing, PID

Scintillator cubes

Mechanical box

Electronics

T2K

Prototypes test beam at CERN

Two prototypes 125 and 9216 cubes were tested at CERN (2017 , 2018) NIMA 936 (2018), JINST 15, 12 (2020), JINST 18 (2023) P01012

Test shows the upgrade achieving requirement

SuperFGD test beam events

T2K

Neutron test beam in LANL

 2 prototypes (Super-FGD and US-Japan) were tested in 2019 and 2020 in LANL

US-Japan

SuperFGD

- Neutron beam energy ranges from 0 to 800 MeV
- Measurement of the total neutron-CH cross section

• Access to neutron kinematic is crucial to understanding better

SuperFGD assembly

- Super FGD assembly has been completed at J-PARC in April
- Super FGD electronic had been successully tested

- The box was closed (27th Dec)
- Transferred to miniBabyBasket (11th Jan)
- Fiber and MPPC board installation ongoing

cables was attached and connection test with commercial electronics.

T2

SuperFGD electronics

Super-FGD electronics 2 frames hosting 8 crates each

Each crate: 16 FEBs, 1 OCB, 1 Backplane

- 243 FEBs produced (221 needed to instrument all channels)
 → 210 passed QA/QC
- Mechanics for the frames, crates, cooling bars and cooling plates have been produced, tested and already to ship to J-PARC
- OCB and Blackplanes (16 neeed for each) are being produced in US and shipped to Geneva
- Ready for shipment to JPARC to start sFGD commissioning on surface

SuperFGD first cosmics

- MCB v1/2
- OCB
- Backplane v1
- 3 FEBs v2
- Pusle generator
- LED driver
- SFGD

Dung Nguyen (VNU-HUS)

Tests and Assembly of ND280 upgrade

High Angle-TPC

- Main difference with existing TPC: thin field cage, resistive Micromegas module (ERAM modules) with better spatial resolution
- 2 Field Cages, central cathode plan, 16 ERAM modules readout at the two opposite Anodes.
- Main purpose: 3D, PID by measuring momentum and deposit charge
- HA-TPC requirement:
 - To distinguish between μ/e at 3σ level ightarrow energy resolution \leq 10%
 - Momentum resolution \leq 10% at 1 GeV/c \rightarrow spatial resolution \leq 0.8 mm

T2/K

High Angle TPCs performance

High Angle TPC

T2/

Tests and Assembly of ND280 upgrade

Time of Flight detectors

Main Goals: + Identification of the direction of the track using time stamp \rightarrow veto the bkg from outside of SuperFGD + Improvement of particle identification using timing

- 6 ToF modules cover 2 HA-TPC and Super-FGD
- Each module 2.4 x 2.2 m² consists of 20 sci bars
- Both ends readout by 8 SiPM on each end (total 236 readouts).

ToF transportation and commissioning on surface

- ToF detector shiped on June 8th visa plane and arrived at JPARC on June 22nd.
- DAQ and SC system fully connected and commissioned successfully the whole ToF
 planes
- Event display show the reconstructed position in all bars.

Installation of Upstream, Bottom planes of ToF in ND280 detector

Installation of U and B planes in ND280 basket

- the U, B planes installed perfectly in ND280 detector.
- Installation of last 4 planes after top HATPC
- **T2** ToF hardward is ready for beam in November

ND280 upgrade physics studies: E_{ν} recontruction

See L. Munteanu's talk

T2K

Detection of neutron

T2/

Improved Observables: Transverse Kinematic Imbalance

Upgrade \rightarrow access to reconstruct in hadronic part of the final state \rightarrow new, more powerful variables: $\delta p_T, \delta \alpha, E_{vis}$

- missing momentum $\delta \vec{p}_T = \vec{p}_{\mu}^T + \vec{p}_{p}^T$
- Transverse boosting angle $\delta \alpha$
- Visible energy $E_{vis} = E_{\mu} + T_{p(n)}$ where $T_{p(n)}$ kinetic energy

Nuclear effects are the main source of E_{ν} uncertainty

for free proton $\delta p_T = 0$ (No nuclear effect)

Phys. Rev. D 105,032010

- δp_T: Fermi motion, 2p2h, seperate CCQE/non-CCQE
- $\delta \alpha$ shape sensitive to FSI
- Evis: Nuclear removal energy

Conclusion

- T2K upgrade goal is 3σ significance to CP violation
 - Beam power is expected to increase from 0.5 MW to 1.3 MW (30 \times $10^{20} \text{POT/year})$
- ND280 upgrade intended to reduce total systematics
 - ND280 upgrade is in the completing assembly and test stage, and begin collecting neutrino data in November 2023
 - ND280 upgrade's low detection thresholds and full polar angle coverage will enable T2K to probe the complete final state of neutrino-nucleus interactions.
 - ND280 upgrade program shows the impressive ability to constrain key systematic uncertainties.

Dung Nguyen (VNU-HUS)

Conclusion

The T2K results: Nature (2020) 580 339 - 344

10

T2K Results

 A large region around π/2 is excluded to 3 α in both mass orderings. CP conserving values are exclued at the 90 % CL

Indication of maximal CP violation in Letter the second state of the second state of

Δm^2_{32} and $heta_{23}$ for NH Normal ordering prefered at 80.8% CL

Physics Processes vs Event Topologies

Event display in ND280 upgrade

CC1 π event: $\nu_{\mu} + N \rightarrow \pi^{+} + p + \mu$

T2

Conclusion

Flux, Spectrum and Intrinsic ν_e

Detectors at ND280

Precise measurement of neutrino-nucleus interactions

T2/

Tests and Assembly of ND280 upgrade

Conclusion

Constraints by NDs in ν oscillation fit

