#### **ProtoDUNE-SP's Performance, Physics status, and Future Plans**

Sungbin Oh, on behalf of the DUNE collaboration Fermi National Accelerator Laboratory

NuFACT 2023, Seoul, Korea



# **ProtoDUNE-SP : Overview**

- A single-phase liquid argon (LAr) time projection chamber (TPC)
- A prototype for full-scale elements of the first far detector module of the DUNE
- Total LAr mass of 0.77 kt on surface at the CERN neutrino platform





# **ProtoDUNE-SP : Operation**

- Construction and installation was completed : early July 2018
- Filling LAr and commissioning : July Aug. 2018
- Beam run : Aug. 29 Nov. 11 2018
- Cosmic run : continued through July 19, 2020



Sungbin Oh I NuFACT 2023

- Charged particles ionize argon atoms
  - Electrons are drifted by an electric field to anode wires
    - Maximum drift time is about 2.2 ms
    - Impurities such as  $O_2$  and  $H_2O$  absorb drifting electrons
  - Photons are emitted through recombination between Ar<sup>+</sup> and e<sup>-</sup>
    - Detected by photon sensors
    - Impurities such as  $N_2$  absorb such photons
    - Used to define the  $T_0$  of an event







![](_page_3_Figure_1.jpeg)

![](_page_3_Figure_2.jpeg)

### **Performance - Drift Electric Field**

- During the beam run
  - Stably worked at nominal level of 500 V/cm
  - Recovery from trips took an average of 4 minutes during beam-on periods
- For total data taking periods including cosmics, > 99.5% of uptime

![](_page_4_Figure_5.jpeg)

#### **Performance - Electron Lifetime**

- Purity monitors : outside field cage
  - Use fraction of photoelectrons generated at the cathode ( $Q_C$ ) that arrive at the anode ( $Q_A$ ) after time t •  $Q_A/Q_C = exp(-t/\tau)$ , where  $\tau$  is the electron lifetime
- Cosmic muon sample : data from the TPC
  - Through going muons which pass cathode plane of the TPC : almost uniform dE/dx (MIP) and good  $T_0$ Distribution of dQ/dx as a function of hit time provides electron lifetime

![](_page_5_Figure_7.jpeg)

![](_page_5_Figure_10.jpeg)

| Xe flash lamp |
|---------------|
|               |
| rM drawing    |

#### **Performance - Electron Lifetime**

- Purity monitors : outside field cage
  - Use fraction of photoelectrons generated at the cathode ( $Q_C$ ) that arrive at the anode ( $Q_A$ ) after time t •  $Q_A/Q_C = exp(-t/\tau)$ , where  $\tau$  is the electron lifetime
- Cosmic muon sample : data from the TPC
  - Through going muons which pass cathode plane of the TPC : almost uniform dE/dx (MIP) and good  $T_0$ Distribution of dQ/dx as a function of hit time provides electron lifetime

![](_page_6_Figure_7.jpeg)

7 Aug 22

![](_page_6_Figure_10.jpeg)

| Xe flash lamp |
|---------------|
|               |
| rM drawing    |

#### **Performance - Electronic Noise**

- There is no electron multiplication upstream of sense wires
  - Signals on wires induced by drifting electrons are very small : thousands of electrons
  - Noise level much lower than such signals is essential for hit reconstruction
- Electronic noise of all channels in anode planes : in the unit of equivalent noise charge (ENC) more in backup
  - Averaged over all operational channels : ~ 550  $e^-$  for the collection plane, ~ 650  $e^-$  for the induction planes

![](_page_7_Figure_6.jpeg)

#### ENC of all channels of an anode plane assembly

8 Aug 22

![](_page_7_Figure_10.jpeg)

**Germilab** 

# Performance - Photon Detector System

- The photon detector system (PDS) consists of three types
  - Wave guiding to SiPMs with two coating schemes
  - Light trap "ARAPUCA"
- Light yield : 1.9 photons / MeV
- Timing resolution
  - Resolution on time difference between two pulses : ~ 14 ns

![](_page_8_Figure_7.jpeg)

9 Aug 22 Sungbin Oh I NuFACT 2023

![](_page_8_Figure_12.jpeg)

#### DUNE:ProtoDUNE-SP

![](_page_8_Picture_16.jpeg)

SiPM Array eflective Vikuiti ESP

### **Performance - Summary**

- ProtoDUNE-SP meets or surpasses the specifications set for the DUNE far detector
  - Effectiveness of the single-phase DUNE far detector design
  - Execution of the fabrication, assembly, installation, commissioning, and operations phases

| Detector parameter           | ProtoDUNE-SP performance       | DUNE specification           | JINST 15 (2020) 1 |
|------------------------------|--------------------------------|------------------------------|-------------------|
| Average drift electric field | 500 V/cm                       | 250 V/cm (min)               |                   |
|                              |                                | 500 V/cm (nominal)           |                   |
| LAr e-lifetime               | > 20 ms                        | > 3 ms                       |                   |
| TPC+CE                       |                                |                              |                   |
| Noise                        | (C) 550 e, (I) 650 e ENC (raw) | < 1000 e ENC                 |                   |
| Signal-to-noise (SNR)        | (C) 48.7, (I) 21.2 (w/CNR)     |                              |                   |
| CE dead channels             | 0.2%                           | < 1%                         |                   |
| PDS light yield              | 1.9 photons/MeV                | > 0.5 photons/MeV            |                   |
|                              | (@ 3.3 m distance)             | (@ cathode distance — 3.6 m) |                   |
| PDS time resolution          | 14 ns                          | < 100 ns                     |                   |

![](_page_9_Picture_6.jpeg)

![](_page_9_Figure_7.jpeg)

# Hadron - Argon Cross Section Measurements

- Motivations
  - Nuclear effects in argon will be one of the most dominant sources of systematic uncertainties of the DUNE
  - Hadron - Ar cross section results are essential inputs to model such effect
    - Final-state interactions of knocking out nucleons and resonantly produced particles before leaving the interacting nucleus
    - Multi-nucleon correlations for neutrino Ar interactions
    - Secondary interactions of knocked out nucleons or resonantly produced particles with other argon atoms in the detector
  - Not enough experimental results for hadron Ar scatterings in kinetic energy ~ 100 MeV to 1 GeV region We are interpolating experimental results of nuclides with similar atomic masses to model hadron - Ar
    - cross sections
    - ProtoDUNE analyses can provide unique results that have never been measured

![](_page_10_Picture_11.jpeg)

![](_page_10_Picture_12.jpeg)

![](_page_10_Picture_13.jpeg)

#### **Cross Section Measurement Principle** Inciden particle Interactions inside a continuous medium Consider propagation of beam particle as series of thin-target experiments Thin target The LArIAT collaboration introduced the "thin slice method" Phys. Rev. D 106, 052009 ProtoDUNE expands this pioneering work Incident particles The formula measuring cross sections Cross section ( $\sigma$ ) in a thin slice with a width $\delta x$ Count number of beam particles enter the slice : N<sub>Incident</sub> $<\delta x > = 4.7 \text{ mm}$ Count number of beam particles that interact inside the slice : $N_{Interact}$ Interaction probability = $\frac{N_{\text{Interact}}}{N_{\text{Incident}}} = 1 - \exp(-\sigma n \delta x) = 1 - \exp\left(-\sigma n \Delta E \frac{1}{dE/dx}\right)$ ,

where n is argon number density ( =  $\frac{\rho N_A}{r}$ ) M<sub>Ar</sub> N<sub>Incident</sub>  $\sigma(E_i, E_i + \Delta E) =$  $= \frac{1}{\rho N_A \Delta x} ln$  $N_{\text{Incident}} - N_{\text{Int}}$ 

$$\frac{1}{1} = \frac{M_{Ar}}{\rho N_A \Delta E} \frac{dE}{dx} \bigg|_{E_i + \frac{\Delta E}{2}} \ln \left( \frac{N_{Incident}}{N_{Incident} - N_{Interact}} \right)$$

![](_page_11_Picture_12.jpeg)

![](_page_11_Picture_13.jpeg)

Ninteracting

90 cm

LArIAT LArTPC

(not to scale)

# Total Inelastic Scattering Cross Section : 1 GeV/c π+ Beam

- Important event selection requirements
  - Beam instrumentation TOF < 110 ns : to remove beam proton background
  - Proton veto using energy loss profile
    - To reduce background coming from events in which secondary protons are reconstructed as beam tracks
  - Stopping muon veto cut : to reduce muon beam background
- Results

![](_page_12_Figure_7.jpeg)

Sungbin Oh I NuFACT 2023

![](_page_12_Figure_10.jpeg)

# Charge Exchange Cross Section : 1 GeV/c π<sup>+</sup> Beam

- - Beam instrumentation TOF < 110 ns

![](_page_13_Figure_7.jpeg)

![](_page_13_Figure_8.jpeg)

# **Total Inelastic Scattering Cross Section : 1 GeV/c p+ Beam**

- Important event selection requirements
  - Beam instrumentation 110 ns < TOF < 160 ns
  - Stopping proton veto using energy loss profile
    - To reduce background coming from events that beam proton with no inelastic scattering

![](_page_14_Figure_5.jpeg)

![](_page_14_Figure_10.jpeg)

![](_page_14_Picture_12.jpeg)

#### Total Inelastic Scattering Cross Section : 6 and 7 GeV/c K+ Beam

- Important event selection requirements
  - High energy beam sample : enough number of events with beam  $K^+$
  - Beam instrumentation Cherenkov detectors
    - Signal in high-pressure Cherenkov and no signal in low-pressure Cherenkov

![](_page_15_Figure_5.jpeg)

Sungbin Oh I NuFACT 2023

|     |             | Momentum (GeV/c) |          |   |
|-----|-------------|------------------|----------|---|
|     |             | 1                | 2        | 3 |
| е   | TOF (ns)    | 0, 105           | 0, 105   |   |
|     | Low P Che.  | 1                | 1        | 1 |
|     | High P Che. |                  |          | 1 |
| μ/π | TOF (ns)    | 0, 110           | 0, 103   |   |
|     | Low P Che.  | 0                | 0        | 0 |
|     | High P Che. |                  |          | 1 |
| K   | TOF (ns)    |                  | _        |   |
|     | Low P Che.  |                  | —        | 0 |
|     | High P Che. |                  | _        | 0 |
| р   | TOF (ns)    | 110, 160         | 103, 160 |   |
|     | Low P Che.  | 0                | 0        | 0 |
|     | High P Che. | —                | —        | 0 |

Phys. Rev. Accel. Beams 22, 061003

#### Beam instrumentation particle ID logic

![](_page_15_Figure_13.jpeg)

# LAr Properties : Electron - Ar+ Recombination

- Recombinations between Ar+ ions and electrons
  - Non-linear relation between deposited energy number of electrons from ionizations (dQ/dx)
- Leading models

![](_page_16_Figure_4.jpeg)

- W = 23.6 eV/electron (average energy to ior and  $\rho$  = density of liquid argon (g/cm<sup>3</sup>)
- $A_B^{},\,k_B^{},\,\alpha,$  and  $\beta'$  are fitted parameters

Non-linear relation between deposited energy (dE/dx) by passing particle via ionization and observed

Modified box model  $\frac{dQ}{dx} = \frac{1}{\rho\epsilon\beta'W} \log\left(\rho\epsilon\beta'\frac{dE}{dx} + \alpha\right)$ 

W = 23.6 eV/electron (average energy to ionize argon atom),  $\epsilon$  = electric field strength (kV/cm),

![](_page_16_Picture_11.jpeg)

# LAr Properties : Electron - Ar+ Recombination

- Perform fitting on dQ/dx distributions as function of residual range of stopping beam protons Use Landau-Vavilov function to convert residual range into expected most probable value of dE/dx
- MC sample : recombination was simulated using the modified box model
  - Parameters from Acciarri, R. et al (ArgoNeuT Collab.), *JINST* 8 (2013) P08005

![](_page_17_Figure_5.jpeg)

![](_page_17_Picture_7.jpeg)

![](_page_17_Picture_8.jpeg)

#### **Future Plans**

- ProtoDUNE-SP physics analyses
  - Secondary K<sup>+</sup> analysis
    - Secondary  $K^+$  particle identification development
    - Understanding energy deposition of  $K^{+}$  inside the ProtoDUNE-SP
    - Secondary  $K^+$  production cross section measurement
  - Neutron argon cross section measurement
    - Using displaced proton signature from  $\pi^+$  beam events with various beam momenta
- New DUNE prototype detectors at the CERN neutrino platform
  - ProtoDUNE-HD (horizontal drift) and ProtoDUNE-VD (vertical drift)
  - Will be online in 1-year time window
  - More data with low energy beam (< 0.5 GeV/c) will provide physical constraints for Ar nuclear properties and hadron - Ar interactions in phase spaces of the DUNE's neutrino interactions

![](_page_18_Picture_13.jpeg)

# Summary

- Detector performance

  - By meeting or surpassing the DUNE requirements, the ProtoDUNE-SP proved
    - Effectiveness of the single-phase DUNE far detector design
    - Execution of the fabrication, assembly, installation, commissioning, and operations phases
- Physics
  - Hadron Ar scattering cross section measurements
    - Three 1D inelastic cross section and one 2D  $\pi^+$  Ar charge exchange cross section measurements will be published soon
    - Secondary K<sup>+</sup> analysis and neutron Ar cross section measurement are in progress
  - Liquid argon properties
    - Recombination result will be published soon
    - Electron diffusion study is on the way
  - For more details, please check the annual report to the CERN-SPSC : <u>CERN-SPSC-2023-017</u>
- Future runs with ProtoDUNE-VD and ProtoDUNE-HD will start in one year stay tuned!

ProtoDUNE-SP prototypes most of the components of a DUNE single-phase far detector module at 1:1 scale

![](_page_19_Picture_20.jpeg)

# Back Up

![](_page_20_Picture_3.jpeg)

#### **ENC**

For charge deposits much faster than the nominal 2 µs shaping time of the amplifier, the area A of the resulting signal pulse is proportional to the height h and shaping time  $\tau$ :  $A = Kh\tau$ . The shape is well understood [39] and has been verified with fits of the ProtoDUNE-SP pulser signals. Numerical integration gives  $K = 1.269/\text{tick} = 2.538/\mu\text{s}$ . For such fast signals, the charge may be deduced directly from the pulse height and its standard deviation is called the ENC (equivalent noise charge) [39]. The ProtoDUNE-SP signals are slower than this but the ENC is a standard metric and is presented here to allow comparison with results from other detectors.

The ratio of ENC to sample noise defined here is  $A/h = K\tau$ . The actual shaping time varies from channel to channel but has central value around 2.2 µs which gives a ratio of ENC to sample noise of 5.58. With this factor and the above values for the sampling noise, the mean ENC for the collection channels is 530 e before correlated noise removal and 430 e after. The corresponding numbers for the induction channels are 620 e and 500 e. These noise values are similar to the 500-600 e values obtained from bench measurements with a prototype FEMB at LN2 temperature [3].

- Raw (without correlated noise removal)
  - Collection plane :  $94 e \times 5.58 = 524.5 e$
  - Induction plane : 111  $e \times 5.58 = 619.4 e$

![](_page_21_Figure_8.jpeg)

![](_page_22_Figure_0.jpeg)

discussed in the text.

![](_page_22_Figure_2.jpeg)

![](_page_22_Figure_3.jpeg)

![](_page_22_Figure_5.jpeg)

#### Phys. Rev. Accel. Beams 22, 061003

![](_page_22_Figure_9.jpeg)

![](_page_23_Figure_0.jpeg)

### Low Energy Electron ID and Reco.

#### • Study using Michel electrons from muon decays

![](_page_24_Figure_2.jpeg)

Aug 22 Sungbin Oh I NuFACT 2023 25

#### Phys.Rev.D 107 (2023) 9, 092012

**<b>‡**Fermilab

### Secondary Charged Kaon Study

• Using 'hook' signature of stopping secondary charged kaons

![](_page_25_Figure_2.jpeg)

![](_page_25_Picture_4.jpeg)

![](_page_25_Figure_6.jpeg)

Understand energy deposition of secondary charged kaons

![](_page_25_Picture_8.jpeg)

### **Neutron Inelastic Cross Section Measurements**

![](_page_26_Figure_1.jpeg)

neutron ancestors that underwent any inelastic collisions

![](_page_26_Figure_5.jpeg)

**<b>‡**Fermilab