Avinay Bhat, on behalf of the SBND Collaboration

Signal Processing in SBND with WireCell NuFACT 2023 (08/25/2023)

BNB 8 GeV protons E_v (on axis)= 0.8 GeV 95% v_{μ} and $<$ 1% $v_{\rm e}$

SBN Far

Detector

DETECTOR

SBN Program at Fermilab

MINOS

SBN Near

Detector

1000

 mav

41 July 10

- Definitive goals of the SBN(D) Program at Fermilab are:
	- To investigate the source of the MiniBooNE 'Low Energy Excess'
	- Discovery or exclusion of ~1 eV² sterile neutrinos, a region motivated by MiniBooNE

 -500

- High precision study of v_{μ} -Ar and v_{e} -Ar interactions using both BNB and NuMI neutrino beams
- Conduct BSM physics searches.

Goals of SBN(D)

- Definitive goals of the SBN(D) Program at Fermilab are:
	- To investigate the source of the MiniBooNE 'Low Energy Excess'
	- Discovery or exclusion of ~1 eV² sterile neutrinos, a region motivated by MiniBooNE
	- High precision study of v_μ-Ar and v_e-Ar interactions using both BNB and NuMI neutrino beams
	- Conduct BSM physics searches.

Beyond the Standard Model Searches with the Short Baseline Near Detector

Goals of SBN(D)

Studying Neutrino-Nucleus Interactions at SBND with Muon Neutrino Charged-Current Events with no Pions in the Final State

Status of the Short-Baseline Near Detector at Fermilab

Diana Patricia Mendez Building 28 Aug 22, 2023, 2:00PM

Neutrino Interaction Measurement Capabilities of the SBND Experiment Andrew Furmanski, Vishvas Pandey

Building 28 Aug 25, 2023, 2:30PM

Xiao Luo Building 28 Aug 25, 2023, 6:06PM

Mun Jung Jung

SBN Near Detector

Wire Plane: 3 readout planes, \sim 11000 wires

SBND Event Display

LArTPC Technology (Single Phase)

Time propagation of signal across three wire planes

Three wire planes sense the induced current signal

WireCell Signal Processing

- Signal Formation in SBND LArTPC
- Signal Processing and Optimization
- Future Outlook and Summary

Signal Formation

• Signal formation is the overall series of steps from creation of ionization electrons to the eventual ADC waveform information

ANGEL DESCRIPTION

Signal Formation

ē shower

Production

No gap from vertex

e Production and
drift in LAR Field Response

Electronics

Charge Production and

$\frac{1}{2}$ Cold Electronics

- Ionization
- Recombination

Drift

- Diffusion
- Attachment or absorption
- Time
- Wire

- Preamplifier
- RC Filter
- ADC

Long Range Effect

Signal Formation

for the contract of the contr

Charge Production and drift in LAR

Signal Formation

ē shower

Production

Charge Production and drift in LAR

- Ionization
- Recombination

Drift

- Diffusion
- Attachment or absorption

Charge Production and drift in LAR

Ionization of Ar atom by incident particle

Charge Production and drift in LAR

$$
R = \frac{d}{d}
$$

 $R \approx 70\%$ @87K, 500V/cm

dQ/*dX dE*/*dX*

Signal Formation—Attachment Ar ē shower Ar

 $\frac{1}{\sqrt{1-\frac{1}{2}}\cdot\frac{1}{\sqrt{1-\frac{1}{2}}}}$

Charge Production and drift in LAR

Attachment is the binding of a free (unbound) electron to an atom or molecule.

$$
L = \exp(\frac{-t}{\tau})
$$
, where τ is defined as elec

For high purity Ar, values of τ can be as high as ~18ms (MicroBooNE)

ctron lifetime

Signal Formation - Diffusion

Profile of wire planes

The effects of diffusion are generally very small, especially in comparison with long-range wire induction field response

Roughly a 3D Gaussian diffusion σ_{\parallel} (longitudinal) ~ 1.0 us @1 m drifting σ_{\perp} (transverse) ~ 1.5 mm @1 m drifting

$$
\sigma \propto \sqrt{D_{drift}}
$$

Charge Production and drift in LAR

Signal Formation

ē shower

Production

Charge Production and drift in LAR

- Ionization
- Recombination

Drift

- Diffusion
- Attachment or absorption

Field Response

Signal Formation

ē shower

Production

Charge Production and drift in LAR

- Ionization
- Recombination

Drift

- Diffusion
- Attachment or absorption
- Time
- Wire

Field Response

Long Range Effect

Signal Formation —Field Response

- n charge as • When ionization electrons drift past the initial two induction wire planes toward the final collection wire plane, current is induced on nearby wires. We refer to the induced current on one wire due to a single electron charge as the field response function.
- The principle of current induction is given by Ramo's theorem

$$
i = -q \vec{E}_w \cdot \vec{v}_q
$$

- where **Ew** is the weighting potential at a given wire
- and V_q is the drift velocity of the charge at the given location
- Garfield program is used to calculate the field response functions
- Long range induction current is also induced on nearby wires

Demonstration of electron drift paths in the applied electric field

Signal Formation —Field Response

C. Adams et al, 2018 JINST 13 P07006

Weighting potentials on individual wires of the 2D LArTPC model, using the Garfield program.

Central Wire Field Response

Signal Formation— Field response shape

Field responses (induced-current) from various paths of one drifting ionization electron for the three wire planes.

Signal Formation

ē shower

Production

No gap from vertex

Charge Production and drift in LAR

- Ionization
- Recombination

Drift

- Diffusion
- Attachment or absorption
- Time
- Wire

Field Response

Electronics

Long Range Effect

Signal Formation

Production

- **lonization** \bullet
- Recombination \bullet

Drift

- **Diffusion** \bullet
- **Attachment or** \bullet absorption

Charge Production and drift in LAR

Field Response

Electronics

Cold Electronics

- Preamplifier
- RC Filter
- · ADC

Long Range Effect

- Time
- Wire

CONSTRUCTION

Signal Formation— Cold Electronics

There is no electron amplification inside LAr.

—Signal is very small ~10s k electrons

— Cold electronics is essential to minimize electronics noise considering large wire capacitance

—Significantly improves the performance of induction wire plane

Diagram of SBND TPC readout electronics.

arXiv:1910.06434

Signal Formation— Cold Electronics

There is no electron amplification inside LAr.

—Signal is very small ~10s k electrons

— Cold electronics is essential to minimize electronics noise considering large wire capacitance

—Significantly improves the performance of induction wire plane

arXiv:1910.06434

ENC measurement for SBND wire planes

Induced Current Response

Signal Formation— Response over wires

Central Wire Response with [-N, +N] Wires

Position-averaged convolved field and electronics response for the U plane in SBND.

Central wire response function for a single electron including

- (a) no neighboring wires or
- (b) [-10, +10] neighboring wires

WireCell Signal Processing

- · Signal Formation in SBND LArTPCV
- Signal Processing and Optimization
- Future Outlook and Summary

27

WireCell Signal Processing

• The goal of (ROI) detection technique is to define a region in the time domain to contain the

- distribution of ionization electrons.
- Significantly reduces low-frequency noise, increasing the signal-to-noise ratio
- To maximize the signal-to-noise ratio, the ROI in the time domain should be as small as possible

Signal Processing Optimization in SBND

Geometric coordinates and angles. The *θxz* angle of the ionization affects the signal shape on the wires.

Signal Processing Optimization in SBND

True Ionization Charge **Raw Waveforms SBND SBND SBND Simulation Simulation Simulation** $-1 - 1 - 1 - 1$ **SBND Work SBND Work SBND Work** time In Progress In Progress In Progress wire # ៷៷≁

Comparison of true, raw, and deconvolved waveforms with corresponding 2D event displays. The unphysical negative features of the 1D deco. are visible, as well as the improved "shadow" removal of the optimized 2D deco.

Simulated Neutrino Event (U Plane)

 $1D$ Deco. $+$ SP

Signal Processing Optimization in SBND

Optimized Signal Processing Performance

Fractional charge difference distribution for *θxz* [∈] [0,5] Bias and resolution of charge extraction using optimal SP filter values for all angular bins.

Multithreading for Signal Processing

• On the computing power side of things, we have implemented multithreading to significantly improve the time required to process the signal response for each event as well as save memory.

WireCell Signal Processing

- Signal Formation in SBND LArTPC✅
- Signal Processing and Optimization✅
- Future Outlook and Summary

DNNs for Improving Signal Processing

U-Net architecture

- Intermediate 2D images are generated from original raw waveform images.
- Deconvolved signals from a loose low-frequency filter (a)
- Multi plane matching using 2 planes (MP2) (b)
- Multi plane matching using 3 planes (MP3) (c)
- Output is a single channel 2D image labeling each pixel as signal or not.

Wire-Cell 3D Imaging

MicroBooNE

3D Image 3D Image

JINST 16 P06043

Summary

- It is important to understand all the constituent steps in signal formation to be able to recover all the charge via signal processing.
- Significant progresses have been made in the SBND TPC signal processing and optimization
- Further improvements utilizing DNN ROI finding will significantly improve signal thresholds to protect the blip-like MeV scale energy topologies.
- Will further optimize signal processing with SBND commissioning data, to be taken by this year end. Stay tuned !

processing performance. Ongoing work in 3-D Imaging. We also plan on utilizing lowered

Thanks !

Backup Slides

38

Outline

- Fermilab SBN Program and SBN Near Detector (SBND)
- SBND Physics, Technology and Goals
- Signal Formation in SBND LArTPC
- Signal Processing and Optimization
- Future Outlook and Summary

120 128 GeV protons 8° off-axis, $E_v = 0.65$ GeV

Signal Formation - Diffusion

As charge drifts in the direction of the electric field, it changes from point charge to a patch undergoing both longitudinal as well as transverse diffusion, in time and wire dimension respectively.

Charge Production and drift in LAR

Signal Formation —Field Response

no gap from vertex and vertex and vertex and vertex and vertex \mathbf{r} The overall response functions after convolving the field response function and an electronics response function