

The spectrum analysis of light emitted by LED using a CMOS RGB-based image sensor and feasibility study for its application

<u>PARK Hyeon Woo¹</u>, JOO Kyung Kwang¹

(¹Center for Precision Neutrino Research, Department of Physics Chonnam National University)

Introduction & Motivation

- ✓ Liquid Scintillator (LS) is used for detecting charged or neutral particles in particle physics experiments.
- ✓ Spectrophotometer is usually used for measuring emission spectrum of LS. Instead, we try to use a digital image with complementary metal oxide semiconductor (CMOS) sensor camera. \checkmark As a prior research, we study the spectrum analysis of LED source using camera. (Canon EOS 450D)

LED Source Image

- \checkmark For the light spectrum we used 2 kinds of light source. ✓ One is white LED that diffracted through the transmission blazed grating.
- \checkmark We took the picture of $0 \sim 1^{st}$ order of diffraction fringe on the screen. \checkmark From diffraction fringe, the distance between the 0 order and 1st could convert with wavelength of each point via Bragg's law. $(2d \sin \theta = m\lambda)$

Camera Response & Hue

- ✓ Camera could reconstruct the color using color filter. \checkmark Each R, G, B color filter has transmittance spectrum. ✓ Generally, these color filter is combined with certain pattern called Bayer filter. (RG/GB)
- ✓ We assume that each Color filter intensity is on the RGB color space and convert it with HSV color space.
- \checkmark HSV color space is consist with Hue(H), Saturation(S) and Value(V). And it is linear with RGB color space. ✓ In HSV color space H is chromatic property that could be relate with wavelength.

Bayer filter

Diffraction grating image

Laser Source Image

- ✓ Second light source is laser using 3 range of laser module with 405, 440 and 473 nm.
- ✓ Laser image is used to cross check the result from LED source.

HSV color space

Raw Image

- ✓ When light passes the Bayer filter, it is injected into photodiode on the CMOS sensor and saved as a voltage.
- \checkmark This voltage is digitalized and saved in raw image.
- ✓ In raw image, each pixel shows one of light intensity about the R, G or B filter.
- ✓ Normally image is interpolated but in this analysis we used down sampling to mimic R, G, B to RGB color space.

Result & H-W curve

- ✓ With LED image, we produce the H-W curve range of 420~650 nm.
- ✓ Laser image shows the narrow distribution of Hue and it was close to LED H-W curve.

Summary & Future Plan

✓ We got the H-W relation of the Canon EOS 450D

Raw image sample $(2N \times 2N \times 1)$

Raw data for each red, green, blue pixels (From Bayer filter)

After down sampling $(N \times N \times 3)$

camera.

✓ With this relation, we can reconstruct the wavelength from narrow spectral light using the digital image \checkmark In the future, measuring emission spectrum using LS fluorescence images based on the CMOS camera can be performed instead of spectrophotometer.

Reference

✓ McGregor, T.J.; Spence, D.J.; Coutts, D.W. Laser-based volumetric colour-coded three-dimensional particle velocimetry. Opt. Lasers Eng. 2007, 45, 882–889. ✓ De Oliveira, H.J.S de Almeida, L.F. A handheld smartphone-controlled pectrophotometer based on hue to wavelength conversion for molecular absorption and emission measurements. Sens. Actuators B 2017, 238, 1084–1091.