Charged lepton flavor violation for a probe to the neutrino masses and their hierarchy

Masato Yamanaka (Hosei Univ.)

Neutrino oscillation and LFV

Neutrino oscillation calls new physics beyond the standard model (SM)

<u>SM</u>

Lepton number is always conserved

<u>SM + ν oscillation</u>

Will be discovered with $10^{55} \mu$ (:)

 $BR\simeq 7.4\times 10^{-55}$

S. Petcov, Sov. J. Nucl. Phys. (1977) G. Hernandez-Tome, et al, EPJC (2019)

NuEIT 5 2 (2022)		Normal Ord	Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 6.4)$	
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
	$\sin^2 \theta_{12}$	$0.303\substack{+0.012\\-0.012}$	$0.270 \rightarrow 0.341$	$0.303\substack{+0.012\\-0.011}$	$0.270 \rightarrow 0.341$	
ata	$ heta_{12}/^{\circ}$	$33.41_{-0.72}^{+0.75}$	$31.31 \rightarrow 35.74$	$33.41_{-0.72}^{+0.75}$	$31.31 \rightarrow 35.74$	
eric d	$\sin^2 \theta_{23}$	$0.451\substack{+0.019\\-0.016}$	$0.408 \rightarrow 0.603$	$0.569\substack{+0.016\\-0.021}$	$0.412 \rightarrow 0.613$	
sphe	$\theta_{23}/^{\circ}$	$42.2^{+1.1}_{-0.9}$	$39.7 \rightarrow 51.0$	$49.0^{+1.0}_{-1.2}$	$39.9 \rightarrow 51.5$	
atmo	$\sin^2 \theta_{13}$	$0.02225\substack{+0.00056\\-0.00059}$	$0.02052 \to 0.02398$	$0.02223\substack{+0.00058\\-0.00058}$	$0.02048 \rightarrow 0.02416$	
SK	$ heta_{13}/^\circ$	$8.58^{+0.11}_{-0.11}$	$8.23 \rightarrow 8.91$	$8.57^{+0.11}_{-0.11}$	$8.23 \rightarrow 8.94$	
with	$\delta_{ m CP}/^{\circ}$	232^{+36}_{-26}	$144 \to 350$	276^{+22}_{-29}	$194 \to 344$	
	$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.41\substack{+0.21 \\ -0.20}$	$6.82 \rightarrow 8.03$	$7.41\substack{+0.21 \\ -0.20}$	$6.82 \rightarrow 8.03$	
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.507^{+0.026}_{-0.027}$	$+2.427 \rightarrow +2.590$	$-2.486\substack{+0.025\\-0.028}$	$-2.570 \rightarrow -2.406$	

Neutrino oscillation and LFV

Neutrino oscillation calls new physics beyond the standard model (SM)

<u>SM</u>

Lepton number is always conserved

 $\frac{SM + \nu \text{ oscillation}}{Will be discovered with 10^{55} \mu \text{ ossible!!}}$

NuEIT 5 2 (202)		Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 6.4)$	
INULI	1 3.2 (202	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
	$\sin^2 \theta_{12}$	$0.303\substack{+0.012\\-0.012}$	$0.270 \rightarrow 0.341$	$0.303\substack{+0.012\\-0.011}$	$0.270 \rightarrow 0.341$
ata	$\theta_{12}/^{\circ}$	$33.41^{+0.75}_{-0.72}$	$31.31 \rightarrow 35.74$	$33.41^{+0.75}_{-0.72}$	$31.31 \rightarrow 35.74$
ric d	$\sin^2 \theta_{23}$	$0.451\substack{+0.019\\-0.016}$	$0.408 \rightarrow 0.603$	$0.569\substack{+0.016\\-0.021}$	$0.412 \rightarrow 0.613$
sphe	$\theta_{23}/^{\circ}$	$42.2^{+1.1}_{-0.9}$	$39.7 \rightarrow 51.0$	$49.0^{+1.0}_{-1.2}$	$39.9 \rightarrow 51.5$
utmo	$\sin^2 \theta_{13}$	$0.02225\substack{+0.00056\\-0.00059}$	$0.02052 \to 0.02398$	$0.02223\substack{+0.00058\\-0.00058}$	$0.02048 \to 0.02416$
SK å	$ heta_{13}/^{\circ}$	$8.58\substack{+0.11\\-0.11}$	$8.23 \rightarrow 8.91$	$8.57\substack{+0.11\\-0.11}$	$8.23 \rightarrow 8.94$
with	$\delta_{ m CP}/^{\circ}$	232^{+36}_{-26}	$144 \to 350$	276^{+22}_{-29}	$194 \to 344$
	$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.41^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.03$	$7.41^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.03$
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.507^{+0.026}_{-0.027}$	$+2.427 \rightarrow +2.590$	$-2.486\substack{+0.025\\-0.028}$	$-2.570 \rightarrow -2.406$

Neutrino oscillation and LFV

Neutrino oscillation calls new physics beyond the standard model (SM)

<u>SM</u>

Lepton number is always conserved

 $\frac{SM + \nu \text{ oscillation}}{Will be discovered with 10^{55} \mu} OSSIBLE!!$

NuEIT 5 2 (202		2) Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 6.4)$	
Thur I		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
	$\sin^2 \theta_{12}$	$0.303\substack{+0.012\\-0.012}$	$0.270 \rightarrow 0.341$	$0.303\substack{+0.012\\-0.011}$	$0.270 \rightarrow 0.341$
ata	$ heta_{12}/^{\circ}$	$33.41_{-0.72}^{+0.75}$	$31.31 \rightarrow 35.74$	$33.41_{-0.72}^{+0.75}$	$31.31 \rightarrow 35.74$
ric d	$\sin^2 \theta_{23}$	$0.451\substack{+0.019\\-0.016}$	$0.408 \rightarrow 0.603$	$0.569\substack{+0.016\\-0.021}$	$0.412 \rightarrow 0.613$
sphe	$\theta_{23}/^{\circ}$	$42.2^{+1.1}_{-0.9}$	$39.7 \rightarrow 51.0$	$49.0^{+1.0}_{-1.2}$	$39.9 \rightarrow 51.5$
atmo	$\sin^2 \theta_{13}$	$0.02225\substack{+0.00056\\-0.00059}$	$0.02052 \to 0.02398$	$0.02223\substack{+0.00058\\-0.00058}$	$0.02048 \to 0.02416$
SK å	$\theta_{13}/^{\circ}$	$8.58\substack{+0.11\\-0.11}$	$8.23 \rightarrow 8.91$	$8.57^{+0.11}_{-0.11}$	$8.23 \rightarrow 8.94$
with	$\delta_{ m CP}/^{\circ}$	232^{+36}_{-26}	$144 \to 350$	276^{+22}_{-29}	$194 \to 344$
	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.41^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.03$	$7.41_{-0.20}^{+0.21}$	$6.82 \rightarrow 8.03$
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \ {\rm eV}^2}$	$+2.507^{+0.026}_{-0.027}$	$+2.427 \rightarrow +2.590$	$-2.486^{+0.025}_{-0.028}$	$-2.570 \rightarrow -2.406$

In the physics beyond the SM

- -- accessible LFV rate by extra degrees of freedom
 - (new particles, additional space dimension, ...)
- -- not only evidence, but also sensitive to the extra degrees

ν mass generation scenarios

(1) Tree-level mass generation

Type-I (-II, -III) Seesaw Inverse Seesaw Linear Seesaw High- (Low-, middle-) scale Seesaw, etc [with or without SUSY, extra dimension, etc]

(2) loop-level mass generation

Scotogenic Leptoquark Zee-Babu R-parity violating SUSY, etc [1-loop, 2-loop, 3-loop, ...]

ν mass generation scenarios

(1) Tree-level mass generation

Type-I (-II, -III) Seesaw Inverse Seesaw Linear Seesaw High- (Low-, middle-) scale Seesaw, etc [with or without SUSY, extra dimension, etc]

(2) loop-level mass generation

Scotogenic Leptoquark Zee-Babu R-parity violating SUSY, etc [1-loop, 2-loop, 3-loop, ...]

Find intrinsic patterns of correlation of observables for these scenarios!

How to unravel the physics behind the LFV

Unknown particle **indirectly** appears in LFV reactions

Not appeared in direct observables

Many LFV observables as possible to

draw "unknown" from various angles

- $\ \ \, \mu^+ \to e^+ \gamma$
- $\mu^- \rightarrow e^-$ conversion in nuclei
- $\mu^- e^- \rightarrow e^- e^-$ in muonic atom
- $\tau \rightarrow 3\mu, \tau \rightarrow e\pi\pi, \tau \rightarrow \mu\gamma, \dots$, etc

<u>Accurate connection</u> between LFV parameters and observables

- Characteristic signatures for each LFV operator
- Dependences on experimental stage
- Ratios and correlations of BRs etc

The more LFV processes, the "elephant" is more clearly illustrated!

Outline

1. Introduction

2. Lepton flavor violating processes

3. ν mass generation scenarios and LFV

4. Summary

Lepton flavor violating processes

Radiative decay $\ell_i \rightarrow \ell_j \gamma$

<u>Signal</u>

- -- back-to-back $e(\mu) + \gamma$,
- $\Sigma E = m_\mu \, ({\rm for} \, \mu \to e \gamma) \, , \ \ \Sigma E = m_\tau \, ({\rm for} \, \tau \to \ell_j \gamma)$

Experimental status

Process	BR limit		Futu	re
$\mu ightarrow e \gamma$	4.2×10^{-13}	MEG (2016)	6.0×10^{-14}	MEG II
$ au o e \gamma$	3.3×10^{-8}	BABAR (2010)	9.0×10^{-9}	Belle II
$ au o \mu \gamma$	4.2×10^{-8}	Belle (2021)	6.9×10^{-9}	Belle II

Probe to various models beyond the SM

SUSY (+ Type-I SeeSaw)

Leptoquark, GUT models

Type-II SeeSaw, extended Higgs models

Higgs LFV, extended Higgs models

3 lepton decay $\ell_i \rightarrow \ell_j \ell_k \ell_k$

e⁺ 61 e⁺ 61 e⁺ 61 e⁺ 61 e⁻

Experimental status

Signal

Process	BR limit		Future	
$\mu \rightarrow eee$	1.0×10^{-12}	SINDRUM (1988)	1.0×10^{-16}	Mu3e
$\tau \rightarrow eee$	2.7×10^{-8}	Belle (2010)	4.7×10^{-10}	Belle II
$ au o \mu \mu \mu$	1.8×10^{-8}	Belle (2010)	2.9×10^{-10}	Belle II
$\tau \rightarrow \mu e e$	1.5×10^{-8}	Belle (2010)	2.3×10^{-10}	Belle II

 $-\sum E_e = m_\mu \, ({\rm for} \, \mu \to eee) \,, \ \ \sum E_\ell = m_\tau \, ({\rm for} \, \tau \to \ell_j \ell_k \ell_k)$

-- spatial momenta $\sum \vec{p_e} = \vec{0}$, time coincidence $\Delta t_{eee} = 0$

Probe to various models beyond the SM

Type-II SeeSaw, extended Higgs models

SUSY (+ Type-I SeeSaw)

 ν MSM, sterile ν

LFV processes in muonic atom

Muonic atom

- -- bound state of muon μ^- and nucleus N
- -- fate of muon in the SM
 - (1) muon decay in orbit

$$(\mu^- N(A,Z)) \rightarrow e^- + \bar{\nu}_e + \nu_\mu + N(A,Z)$$

(2) muon capture

cLFV

$$(\mu^- N(A, Z)) \to \nu_\mu + N'(A, Z - 1)$$

If LFV mediator couples with nucleon

If LFV mediator couples mainly with leptons

 $\mu^- \rightarrow e^-$ conversion

Ν

And also

- \succ μ⁻ → e⁺ conversion
- \triangleright μ⁻ → e⁻γ in muonic atom
- → $\mu^- \rightarrow eX$ (X: light boson)

$\mu^- \rightarrow e^-$ conversion in muonic atom

J. Steinberger and H. Wolfe, Phys. Rev. (1955)

<u>Signal</u>

-- Monoenergetic electron $E_e \simeq 105 \text{ MeV}$

Experimental status

Process	BR limit	Future
$\mu^{-}\mathrm{Au} \rightarrow e^{-}\mathrm{Au}$	7.0×10^{-13} SINDRUM (2006)	N/A
μ^- Ti $\rightarrow e^-$ Ti	4.3×10^{-12} SINDRUM (2006)	N/A
$\mu^- \operatorname{Al} \to e^- \operatorname{Al}$	N/A	$a few imes 10^{-17}$ COMET, Mu2e
μ^- Si $\rightarrow e^-$ Si	N/A	1.0×10^{-14} DeeMe

<u>Probe to various LFV operators</u> (pure leptonic operator, unlike $\mu \rightarrow e$ conv.)

$\mu^- e^- \rightarrow e^- e^-$ in muonic atom

M. Koike, Y. Kuno, J. Sato, MY, PRL (2010)

<u>Signal</u>

- -- back-to-back di-electron of $E_e \simeq m_{\mu}/2$
- -- time coincidence $\Delta t_{ee} = 0$

Experimental status

- -- Limit: N/A (New process!)
- -- included in physics programs of COMET (& Mu2e?)

<u>Probe to various LFV operators</u> (pure leptonic operator, unlike $\mu \rightarrow e$ conv.)

LFV Deep inelastic scattering $e(\mu)N \rightarrow \tau X$

<u>Signal</u>

-- τ with large momentum along the beam-axis (highly depends on types of LFV operator)

ν mass generation scenarios and LFV

P. Minkowski, PLB (1977) T. T. Yanagida, Conf.Proc.C (1979)

SM + heavy right-handed neutrinos

- □ Tiny neutrino mass and mixing for natural size couplings $\lambda \sim O(1)$
- Baryon asymmetry of the universe via leptogenesis

 $\mathcal{M}_{\nu} \sim \langle H \rangle^2 \lambda_{\nu} M_R^{-1} \lambda_{\nu}^T$

<u>All of LFV processes</u> experimentally unreachable, $\Gamma_{\rm LFV} \propto \left| m_D M_R^{-2} m_D^{\dagger} \right|^2$

S. Bilenky, S. Petcov, B. Pontecorvo, PLB (1977) A. Broncano, M. Gavela, E. Jenkins, PLB (2003)

Discovery of LFV \longrightarrow Rule out the minimal type-I seesaw

SM + heavy right-handed neutrinos + <u>SUSY</u>

- □ Tiny neutrino mass and mixing for natural size couplings $\lambda \sim O(1)$
- Baryon asymmetry of the universe via leptogenesis + <u>DM, GUT without desert, etc</u>

Flavor violating entries in slepton soft-breaking mass from RGE running of λ_{ν}

$$\left(\Delta m_{\tilde{L}}^{2}\right)_{ij} = -\frac{\ln\left[M_{\rm GUT}/M_{R}\right]}{16\pi^{2}} \left(6m_{0}^{2} + 2A_{0}^{2}\right) \left(\lambda_{\nu}^{\dagger}\lambda_{\nu}\right)_{ij}$$

F. Borzumati, A. Masiero, PRL (1986) J. Hisano, T. Moroi, K. Tobe, M. Yamaguchi, PRD (1996)

L. Calibbi, A. Faccia, A. Masiero, S. Vempati, PRD (2006)

SM + heavy **RH** neutrinos + <u>sterile fermions</u> (Inverse seesaw) R. Mohapatra, J. Valle, PRD (1986)

- □ Tiny neutrino mass and mixing for natural size couplings $\lambda \sim O(1)$ and twofold seesaw
- Baryon asymmetry of the universe via leptogenesis

 $\begin{array}{c}
\langle H \rangle & \langle H \rangle \\
\downarrow & \langle H \rangle \\
\downarrow & \downarrow \\
\nu_{L} & \xrightarrow{I} & \nu_{R} & X & S & X & \nu_{R} & \downarrow \\
\downarrow & \downarrow & \nu_{R} & X & X & \lambda_{V} & \nu_{L} \\
\downarrow & \downarrow & \lambda_{\nu} & M_{R} & \mu & M_{R} & \lambda_{\nu} & \nu_{L} \\
\end{array}$ $\mathcal{M}_{\nu} \sim \lambda_{\nu} \langle H \rangle \left(M_{R}^{T} \right)^{-1} \mu M_{R}^{-1} \lambda_{\nu}^{T} \langle H \rangle \sim \frac{m_{D}^{2}}{M_{R}^{2}} \mu$

Flavor violating charged current from non-unitarity of PMNS matrix due to extra mixing of leptons

$$\mathcal{L}_{W^{\pm}} = -\frac{g_w}{\sqrt{2}} W_{\mu}^{-} \sum_{\alpha=1}^{3} \sum_{j=1}^{3+n_S} \mathbf{U}_{\alpha j} \bar{\ell}_{\alpha} \gamma^{\mu} P_L \nu_j + \text{H.c.}$$

J. Schechter, J. Valle, PRD (1980)

SM + heavy **RH** neutrinos + <u>sterile fermions</u> (Inverse seesaw) R. Mohapatra, J. Valle, PRD (1986)

- □ Tiny neutrino mass and mixing for natural size couplings $\lambda \sim O(1)$ and twofold seesaw
- Baryon asymmetry of the universe via leptogenesis

10⁻⁵ 10⁻⁵ BR ($\mu^- e^- \rightarrow e^- e^-$, Al) $\begin{array}{c} (\text{IP} \ ^{'}\text{e} \ ^{0}\text{ID} \ ^{10} \end{array} \\ \begin{array}{c} (\text{IP} \ ^{'}\text{e} \ ^{0}\text{ID} \ ^{10} \end{array} \\ \begin{array}{c} (\text{IP} \ ^{'}\text{e} \ ^{0}\text{ID} \ ^{10} \end{array} \\ \begin{array}{c} (\text{IP} \ ^{'}\text{e} \ ^{0}\text{ID} \ ^{10} \end{array} \\ \begin{array}{c} (\text{IP} \ ^{0}\text{ID} \ ^{0}\text{ID} \ ^{0}\text{ID} \end{array} \\ \begin{array}{c} (\text{IP} \ ^{0}\text{ID} \ ^{0}\text{ID} \ ^{0}\text{ID} \ ^{0}\text{ID} \ ^{0}\text{ID} \end{array} \\ \begin{array}{c} (\text{IP} \ ^{0}\text{ID} \end{array} \\ \end{array} \\ \begin{array}{c} (\text{IP} \ ^{0}\text{ID} \ ^{0}\ ^{0}\text{ID} \ ^{0}\ ^{0}\text{ID} \ ^{0}\ ^{0}\text{ID} \ ^{0}\ ^{0}\ ^{0}\ ^{0}\ ^{0}\ ^{0}\ ^{0}\ ^{0}\ ^{0}\ ^{0}\ ^{0}\ ^{0}\ ^{0}\ ^$ 10⁻¹⁰ 7 10⁻¹⁵ 10 U COMET-I COME 10⁻²⁰ 10-20 10⁻²⁵ 10-25 10^{0} 10^{2} 10^{3} 10⁵ 10^{6} 10¹ 10^{4} 10^{-1} $< m_{4-9} > (GeV)$

A. Abada, V. Romeri, A. Teixeira, JHEP (2016)

Z dependence of $\mu^- e^- \rightarrow e^- e^-$ could discriminate type-I seesaw models (SUSY type-I or inverse seesaw)

Y. Uesaka, Y. Kuno, J. Sato, T. Sato, MY, PRD (2018)

Radiative m_{ν} generation: Leptoquark

K. Babu, J. Julio, NPB (2010)

SM + leptoquark ϕ_{LQ} + color octet fermion f

□ Tiny neutrino mass and mixing for natural size couplings $\lambda \sim O(1)$ and loop suppression

 $\square Accounting for <math>B \to D^{(*)}\tau\nu$ anomaly

$$\mathcal{M}_{\nu} \sim 4 \frac{m_f m_b^2 V_{tb}^2}{(2\pi)^8} \sum_{\alpha,\beta=1}^{N_{\phi}} \left(\lambda_{i3\alpha}^{LQ} \lambda_{3\alpha}^{df} \right) (I_{\alpha\beta}) \left(\lambda_{j3\beta}^{LQ} \lambda_{3\beta}^{df} \right)$$

P. Angel, Y. Cai, N. Rodd, M. Shcmidt, R. Volkas, JHEP (2014)

Yukawa couplings of SM fermion and leptoquark violates lepton flavor conservation

Leading channel for leptoquark LFV: $\mu \rightarrow e$ conversion

Radiative m_{ν} generation: Leptoquark

K. Babu, J. Julio, NPB (2010)

SM + leptoquark ϕ_{LQ} + color octet fermion f

□ Tiny neutrino mass and mixing for natural size couplings $\lambda \sim O(1)$ and loop suppression

 $\square Accounting for <math>B \to D^{(*)}\tau\nu$ anomaly

$$\mathcal{M}_{\nu} \sim 4 \frac{m_f m_b^2 V_{tb}^2}{(2\pi)^8} \sum_{\alpha,\beta=1}^{N_{\phi}} \left(\lambda_{i3\alpha}^{LQ} \lambda_{3\alpha}^{df} \right) (I_{\alpha\beta}) \left(\lambda_{j3\beta}^{LQ} \lambda_{3\beta}^{df} \right)$$

How to check τ LFV? How to discriminate this scenario from other m_{ν} generation scenarios?

Carefully formulate the DIS cross section associated with heavy quarks

Y. Kiyo, M. Takeuchi, Y. Uesaka, MY, JHEP (2022)

Summary

□ Neutrino oscillation calls new physics beyond the SM

■ Many v mass generation scenarios
 Verification ↔ Find intrinsic patterns of LFV observables

□ <u>Many LFV observables as possible</u> to draw "unknown" from various angles

□ <u>Accurate connection</u> between LFV parameters and observables -- $\mu \rightarrow e\gamma$ in SUSY type-I seesaw -- $\mu \rightarrow e$ conv. and $\mu^-e^- \rightarrow e^-e^-$ in inverse seesaw -- $\mu \rightarrow e$ conv. and LFV-DIS in leptoquark-loop generation

Summary

