

Constraining Lorentz Invariance Violation with Future Long-Baseline Experiments

Sanjib Kumar Agarwalla^{a,b,c}, Sudipta Das^{a,b}, Sadashiv Sahoo^{a,b}, Pragyanprasu Swain^{a,b}

^a Institute of Physics, Bhubaneswar, India, ^b Homi Bhaba National Institute, India, ^c Department of Physics & WIPAC, UW Madison, USA

Introduction

Lorentz Invariance Violation (LIV) is a Planck-scale ($M_P \sim 10^{19}$ GeV) effect that can be studied at low energies using the so-called Standard Model Extension Lagrangian given by,

$$\mathscr{L}' \supseteq \frac{\lambda}{(M_p)^k} \langle T \rangle \overline{\psi} \Gamma(i\partial)^k \psi + h.c.$$

 $M_p \rightarrow \text{Planck-mass} (10^{19} \text{ GeV})$ $k = 0 \rightarrow CPT$ -conserving LIV parameters $k = 1 \rightarrow CPT$ -violating LIV parameters

 $\mathscr{L}_{\rm LIV} = -\frac{1}{2} \left[a^{\mu}_{\alpha\beta} \,\overline{\psi}_{\alpha} \,\gamma_{\mu} \,P_L \,\psi_{\beta} - i c^{\mu\nu}_{\alpha\beta} \,\overline{\psi}_{\alpha} \,\gamma_{\mu} \,\partial_{\nu} P_L \,\psi_{\beta} \right] + h.c.$

Neutrino propagation with LIV $\mathscr{H}_{\text{eff}} = \frac{1}{2E} U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix} U^{\dagger} + \sqrt{2}G_F N_e \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} a_{ee} & a_{e\mu} & a_{e\tau} \\ a_{e\mu}^* & a_{\mu\mu} & a_{\mu\tau} \\ a_{e\tau}^* & a_{\mu\tau}^* & a_{\tau\tau} \end{pmatrix} \begin{vmatrix} - \frac{4}{3}E \begin{pmatrix} c_{ee} & c_{e\mu} & c_{e\tau} \\ c_{e\mu}^* & c_{\mu\mu} & c_{\mu\tau} \\ c_{e\tau}^* & c_{\mu\tau}^* & c_{\tau\tau} \end{pmatrix}$ CPT-conserving CPT-violating H_{LIV} $P_{\mu e} \simeq P_{\mu e}(\mathrm{SI}) + P_{\mu e}(a_{e\beta}/c_{e\beta}) \& P_{\mu \mu} \simeq P_{\mu \mu}(\mathrm{SI}) + P_{\mu \mu}(a_{\mu \tau}/c_{\mu \tau})$ $\mathbb{S}(a_{\mu\tau}) = 2\underline{L}\sin 2\theta_{23}|a_{\mu\tau}|$

 $P_{\mu e}(SI), P_{\mu \mu}(SI) \rightarrow$ probabilities in presence of the standard interactions only.

POSTER ID: 88

We probe the time-like components (μ , $\nu = 0$) of both the CPT-violating and CPT-conserving LIV parameters with standalone DUNE, Hyper-K, and their combination.

$$(\mathbf{a}_{L}^{0})_{\alpha\beta} \equiv a_{\alpha\beta} \qquad (\mathbf{c}_{L}^{00})_{\alpha\beta} \equiv c_{\alpha\beta}$$

$$P_{\mu e}(a_{e\beta}) \simeq 2|a_{e\beta}| \left[L \sin \theta_{13} \sin 2\theta_{23} \sin \Delta \left[\mathbb{Z}_{e\beta} \sin(\delta_{CP} + \varphi_{e\beta}) + \mathbb{W}_{e\beta} \cos(\delta_{CP} + \varphi_{e\beta}) \right] \right]$$
$$P_{\mu e}(c_{e\beta}) \simeq \frac{-8}{3} |c_{e\beta}| \left[EL \sin \theta_{13} \sin 2\theta_{23} \sin \Delta \left[\mathbb{Z}_{e\beta} \sin(\delta_{CP} + \varphi_{e\beta}) + \mathbb{W}_{e\beta} \cos(\delta_{CP} + \varphi_{e\beta}) \right] \right]$$
$$P_{\mu \mu}(a_{\mu \tau}/c_{\mu \tau}) = \frac{\sin^2 2\theta_{23}}{2} \left[2\sin^2 \theta_{13} \Delta - \mathbb{S} \right] \sin 2\Delta$$

$$\begin{aligned} & \times \cos \varphi_{\mu\tau} \\ & \mu\tau \end{pmatrix} = -\frac{8}{3} \underline{EL} \sin 2\theta_{23} |c_{\mu\tau}| \\ & \times \cos \phi_{\mu\tau}. \end{aligned}$$

 $\mathbb{S}(c$

Neutrino oscillation probability in the presence of LIV

F [CoV]	E [CoV]	F [CoV]	E [GeV]	E [GeV]	E [GeV]	0.25 0.5 0.75 1 1.25 1.5	0.25 0.5 0.75 1 1.25 1
E [Gev]	E [Gev]	E [Gev]	_ [3 3 1]	_[001]	_ [0 0 1]	E [GeV]	E [GeV]

- Appearance probability is affected maximally by $a_{e\mu}$ ($c_{e\mu}$) followed by $a_{e\tau}$ ($c_{e\tau}$)
- $a_{\mu\tau}(c_{\mu\tau})$ impacts the appearance probability marginally compared to $a_{e\mu}(c_{e\mu})$ and $a_{e\tau}(c_{e\tau})$
- The effects of LIV phases are significant in DUNE compared to Hyper-K

- $a_{\mu\tau} (c_{\mu\tau})$ mostly affects the disappearance probability
- The effects of $c_{\alpha\beta}$ are opposite in comparison to those of $a_{\alpha\beta}$
- Hyper-K is almost blind to the CPT-conserving LIV parameters

95% C.L. bounds

	DUNE	Hyper-K	DUNE+Hyper-K	T2K+NO ν A
$ a_{e\mu} \ [10^{-23} \text{ GeV}]$	< 1.0	< 5.15	< 0.32	< 6.1
$ a_{e\tau} \ [10^{-23} \text{ GeV}]$	< 1.05	< 5.3	< 0.55	< 7.0
$ a_{\mu\tau} \ [10^{-23} \text{ GeV}]$	< 1.26	< 5.5	< 1.1	< 8.3
$ c_{e\mu} \ [10^{-24}]$	< 0.66	< 17.1	< 0.64	< 11.0
$ c_{e\tau} \ [10^{-24}]$	< 1.65	< 71.1	< 1.49	< 37.5
$ c_{\mu\tau} \ [10^{-24}]$	< 0.97	< 42.4	< 0.95	< 29.0

Conclusions

- Due to longer baseline and access to multi-GeV energies, DUNE has a better reach in probing both CPT-violating and CPT-conserving LIV parameters
- Hyper-K, which mostly deals with sub-GeV neutrinos, is almost insensitive to the CPT-conserving LIV parameters
- The degeneracy between θ_{23} , δ_{CP} , and the LIV phases lead to the deterioration of the bounds for the individual setups; however, when we add the data from both, these degeneracies disappear

References

Agarwalla et al., Constraining Lorentz invariance violation with next-generation long-baseline experiments, arXiv: 2302.12005, **JHEP 07 (2023) 216**

For queries, please write to: pragyanprasu.s@iopb.res.in