SIMULATION AND RECONSTRUCTION OF INTERACTIONS IN THE UPGRADED T2K ND280 NEAR DETECTOR

The 24th International Workshop on Neutrinos from Accelerators 21-26 August 2023, Seoul National University, South Korea

Katharina Lachner on behalf of T2K | WG1x6 Parallel Session | 25 August 2023

Content

The T2K Near Detector Upgrade

Simulation

Neutrino Interactions Detector Simulation & Response

Reconstruction

Algorithms for the New Subdetectors Performance for Momentum Reconstruction and PID

Selections and New Variables for Physics Analyses

The T2K Near Detector Upgrade

The Off-Axis Near Detector ND280

Original geometry:

[1, 2]

• Replacing the π^0 detector

Katharina Lachner | 25 Aug 2023

NuFact WG1x6 | T2K ND280 Upgrade Sim&Reco

SuperFGD and High Angle TPCs

- Polystyrene cubes (1 cm³)
- ► Three WLS fibres through each cube ⇒ 3D readout
- High angle & short tracks

- $\blacktriangleright \ \mathsf{Ar} + \mathsf{CF}_4 + \mathsf{iC}_4\mathsf{H}_{10} \text{ gas mix}$
- ► ERAM¹ readout (1.1 cm²/pad)
 ⇒ less channels at higher resolution, spark protection

See also D. T. Nguyen's talk

¹Encapsulated Resistive Anode Micromegas

Katharina Lachner | 25 Aug 2023

NuFact WG1x6 | T2K ND280 Upgrade Sim&Reco

Simulation

Simulation of Neutrino Interactions

- ► Generate (anti-)*ν* with *NEUT* generator version 5.4.0 using the *Benhar spectral function* model
- Include quasi elastic scattering, 2p2h, pion production, shallow and deep inelastic scattering
- Nuclear effects, final state int.

See L. Munteanu and T. Doyle's talks.

Detector Simulation - Overview

- ► GEANT4: Trajectory in surrounding 0.2 T B-field
- Physics list: QGSP_BERT [4]
- Geometry:

SuperFGD Response Simulation

► Energy deposit (Bethe-Bloch) ⇒ scintillation (Birks law)

$$\frac{\mathrm{d}L}{\mathrm{d}x} = \varepsilon_{scint} \cdot \frac{1}{1 + c_B \cdot \mathrm{d}E/\,\mathrm{d}x} \cdot \frac{\mathrm{d}E}{\mathrm{d}x}$$

- Optical cross-talk to adjacent cubes at 3.7% per surface
- WLS fibres, attenuation (463 cm long f. 77%, 33 cm short)
- ▶ Collection at SiPMs \rightarrow el. response \rightarrow 0-suppr. (3 p.e.)
- Tuned with test beam data [5], cosmics in progress

Katharina Lachner | 25 Aug 2023

NuFact WG1x6 | T2K ND280 Upgrade Sim&Reco

HA-TPC Response Simulation

Charge drift in E field following Langevin equation

$$\vec{V}_d = \frac{\mu}{1+(\omega\tau)^2} \left(\vec{E} + \omega\tau \frac{\vec{E} \times \vec{B}}{|\vec{B}|} + (\omega\tau)^2 \frac{(\vec{E} \cdot \vec{B}) \cdot \vec{B}}{|\vec{B}|^2} \right)$$

Simulate charge spreading at ERAM readout $\rho(\vec{r}, t) = \frac{RC}{4\pi t} \cdot \exp\left(-\frac{r^2 RC}{4t}\right)$

and corresponding waveform (as conv. with electronics response)

$$WF(t) = \left(\int_A \rho(\vec{r}, t) \, \mathrm{d}x \, \mathrm{d}y\right) \circledast \frac{\mathrm{d}Res_{el}(t)}{\mathrm{d}t}$$

Reconstruction

SuperFGD Reconstruction

SuperFGD - Muons (PGun)

Muon momentum resolution for escaping and stopping muons:

SuperFGD - Protons (PGun)

Momentum (left) and PID (right) for contained protons:

Excellent resolution at low momenta down to 300 MeV
 Momentum threshold for protons in FGDs: 450 MeV [8]

SuperFGD - PID

Confusion matrix for performance of SuperFGD PGun PID:

Excellent separation of e^- vs. γ -induced showers

Katharina Lachner | 25 Aug 2023

NuFact WG1x6 | T2K ND280 Upgrade Sim&Reco

HA-TPC Reconstruction

HA-TPC Reconstruction Performance

- ▶ PGun events with e^- and μ^- (50 MeV-2.1 GeV)
- PID: pull in dE/dx between measured and expected value

Selections and New Variables for Physics Analyses

- ▶ ν_{μ} CC0 π 1p purity 99.6% down to 300 MeV protons
- \blacktriangleright ν_e selection: ongoing work, currently being validated

Delayed Coincidences in the SuperFGD

- Neutron reconstruction from via time of flight
- Expected kin. energy resolution around 20% with 70 cm lever arm

[9]

- Pion identification and kinematics reconstruction via tagging of delayed Michel e⁻
- Without reconstructed π track
- Improved pion selection efficiency at low momentum

Calorimetric Variables

- Precise calorimetry for *individual* SuperFGD tracks in reconstruction of visible and hadronic energy, vertex activity
- Motivation: good handle on $\sum T_p$ in 0π samples
- ▶ Overall resolution on total energy deposit: 1.1% (w.o. syst)
- Developing tools to improve calorimetry for single tracks

Summary

 Multiple tools for reconstruction of muon- and electron (anti-) neutrinos implemented for SuperFGD&HA-TPCs

Work in progress for Time of Flight planes

- Low momentum proton momentum reconstruction and PID works excellent down to 300 MeV
- ▶ Selections for ν_{μ} CC are being finalised, ν_{e} also on the way
- Exciting new analyses in preparation, including first neutron analysis made possible by the fine granularity
- ND280 upgrade is getting ready for first data this winter!

Thank you for your attention!

$\bigvee \bigvee \bigcirc$

Backup - Simulation

Modelling Nuclear Effects and FSI

- Nuclear ground state: Benhar Spectral Function model
- Interaction models:
 - Multi-Nucleon Interactions: Valencia 2p2h
 - Single meson production: Rein-Sehgal with lepton mass corrections for RES and COH
 - Shallow and Deep Inelastic Scattering: GRV98 PDF with Bodek-Yang corrections
- Final state interactions (FSI): cascade models for pion FSI from Salcedo et al., for Nucleon FSI from Bertini et al.

Katharina Lachner | 25 Aug 2023

NuFact WG1x6 | T2K ND280 Upgrade Sim&Reco

Bethe-Bloch Equation

Stopping power in units of energy per density:

$$-\frac{\mathrm{d}E}{\mathrm{d}x} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 W_{max}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

Where:

$$\blacktriangleright K = 4\pi N_A r_e^2 m_e c^2$$

▶ W_{max} ... max. energy transfer to e^-

- I ... mean excitation energy
- $\delta(\beta\gamma)$... density correction

[10]

Density Correction Term $\delta(\beta\gamma)$

Density correction is calculated using Sternheimer parametrisation [11] with constants for polystyrene from [12]:

$$\delta(\beta\gamma) = \begin{cases} 2\ln(10)x + c & \text{if } x \ge x_1 \\ 2\ln(10)x + c + a(x_1 - x)^k & \text{if } x_0 \le x < x_1 \\ 0 & \text{if } x < x_0 \text{ (nonconductors)} \end{cases}$$

Where:

 $\begin{array}{ll} \bullet & x = \log_{10}(\beta\gamma) & \bullet & c = -3.2999 \\ \bullet & x_0 = 0.1647 & \bullet & a = 0.16454 \\ \bullet & x_1 = 2.5031 & \bullet & k = 3.2224 \end{array}$

Scintillation in the SuperFGD

Apply Birks quenching on each SuperFGD hit-segment's dE/dx:

$$E_{\text{hit}}^{\text{reco}}[p.e.] = corr_{Birks} \left(dx_n, E_n[\text{MeV}] \cdot c_{calib} \right) \times \left(E_n[\text{MeV}] \cdot c_{calib} \right)$$

...for light yield E_n in p.e. along distance $dx_n = 10 \text{ mm}$ (one cube), with the following corrections:

- $corr_{Birks}(dx, E) = \frac{1}{1+c_B E/dx}$, with Birk's constant $c_B = 8.98 \cdot 10^{-3} \text{ cm/MeV}$ [13]
- Empirical calibration constant $c_{calib} = 320 \text{ p.e./MeV}$ from CERN testbeam data (to be updated when SFGD runs)

Work by C. McGrew

SuperFGD Test Beam \rightarrow Sim. Constants

Simulation constants from test beam results:

Bragg peak (0.75 GeV protons), Optical cross-talk (6 GeV protons) [5, 14]

Accounting for fluctuations from the calibration result for the gain G (measured per-pad in 55Fe X-Ray scan):

- Each pad's gain is smeared following an exponential distribution
- Corrections for fluctuations in avalanche processes, non-uniformity in the surface etc. are applied
- In particular, each arriving ionisation charge is assigned an effective gain picked from a Polya distribution

ERAM Charge Spreading

Charge in leading vs. neighbouring pad by track position:

⇒ Data from at DESY 202

entries [a.u.]

0.30

0.25

0.20

0.15

0.10

0.05

0

-5

0 5 10 15 20

 \Rightarrow Data from test beam at DESY 2021 data was reproduced by simulation with RC = 100 ns/mm²

-0 mm

-2 mm

-4 mm

25

 $t_2 - t_1$

30

Results from test beam [15]:

$\bigvee \bigvee \bigcirc$

Backup - Reconstruction

SuperFGD Reconstruction

- 3D matching and charge sharing with likelihood fit and entropy maximation
- Reject "ghosts" (shadow tracks) with charge cut and re-apply charge sharing
- Apply clustering algorithm (DBScan)
- Pattern recognition: order hits with minimal spanning tree
- Track fitting with sequential importance re-sampling particle filter
- Boosted Decision Tree (BDT) for track mom. and PID: dE/dx per cube position
- BDT for showers: clusters in cone shape from vertex

SuperFGD 3D Matching, Charge Sharing

3D matching

- 3D hit created for every combination of 3 intersecting active fibres within 100 ns
- Charge sharing
 - Likelihood fit for charge sharing: all hit charges have to add up to readout (after attenuation correction)
 - Entropy maximisation (\$\sum Q \ln Q\$) to avoid degeneracies (priority on higher charges and shorter distances)

SuperFGD Track Fitting

- A sequential importance re-sampling particle filter is used for track fitting (very similar to Kalman filter)
 - 1. High number of random priors
 - 2. Sequentially update prior with new points (cubes)
 - 3. Weigh samples (likelihood)
 - 4. Average sample and repeat
 - 5. Re-sample posteriors at convergence at weight zero

- BDT for track mom. and PID: dE/dx per cube position
- BDT for showers: clusters in cone shape from vertex

BDT for SuperFGD tracks

22 Input parameters:

- ① Node local dE/dx [9]: 3 nodes at the track beginning (after vertex cut) and 6 nodes at the track end.
- ② Node distance [7]: Distance between two neighboring nodes.
- (3) dE/dx fluctuation [2]: (Only for PID) Mean and standard deviation of dE/dx drop along the track.
- ④ Total track length [1]: Computed from the first node (without vertex cut).
- ⑤ Track energy deposition [1]: Computed from the 4th node (with vertex cut).
- 6 Track direction [2]: Polar angle and azimuth angle.

Work by X. Y. Zhao

Muon momentum resolution for SuperFGD

Distribution across full momentum range (backup to slide 13) for escaping (left) and contained tracks (right):

BDT for showers I/II

- 11 Input variables
 - ☑ Number of connected tracks ☑ Number of matched tracks
 - Number of matched clusters
 - Length of the primary track
 - dE/dx of the primary track
 - Total energy deposit in cone
 - 🗹 Axis Max Ratio
 - 🗹 Truncated Max Ratio
 - ☑Q Root Mean Square
 - 🗹 Front Back Ratio
 - Maximum Hit Position

- Newly introduced PID variables. They describe:
 - •Cone shape
 - Hit charge distribution

Trained with particle gun samples.

Work by A. Eguchi

BDT for showers II/II

Work by A. Eguchi

Neutrons out of FV

Out of FV background for neutron selection:

Work by A. Teklu

HA-TPC Reconstruction

- Preparation of hits from fitted waveforms
- Pattern recognition with A-STAR based algorithm
- Position reconstruction per cluster
- Track fitting: circular or parabola fit
- Obtain momentum from helix fit
- PID based on momentum & comparison of measured and expected dE/dx for particle hypothesis

HA-TPC Spatial resolution

HA-TPC Reconstruction: PID

Pull distributions for e^- vs. μ^- by momentum:

 $\Rightarrow 6.6\sigma_E(\mu)$ separation power for muon hypothesis

Katharina Lachner | 25 Aug 2023

NuFact WG1×6 | T2K ND280 Upgrade Sim&Reco

HA-TPC dE/dx Reconstruction

For vertical electrons and muons, 0.05 GeV/c to 2.1 GeV/c:

HA-TPC Momentum Reconstruction

Example: muons at 800 MeV:

Global Reconstruction

Track matching between sub-detectors \Rightarrow combined momentum:

Global reconstruction for SuperFGD and (vertical) TPC
 Combination with High-Angle TPCs is work in progress

 ν_{μ} CC-inclusive Selection Purity Number of events [bin] 5000 12000 12000 12000 T2K Work ν_μ CC0π (52.75%) v., CC1\pi^+ (18.12%) in Progress v, CCother (21.92%) background (3.72%) OO SFGD FV (3.49% u_{μ} CC-inclusive 1000 500 0.5 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Muon reconstructed momentum p_{_} [GeV] 5 \triangleright ν_{μ} CC-incl. purity 94.6%, efficiency 64.7%

References (I)

- K. Abe et al. The T2K experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 659(1): 106-135, 2011. ISSN 0168-9002. doi: https://doi.org/10.1016/j.nima.2011.06.067. URL https://www.sciencedirect.com/science/article/pii/ S0168900211011910.
- [2] The T2K Collaboration, K. Abe et al. T2K ND280 Upgrade Technical Design Report, 2020. arXiv:1901.03750 [physics.ins-det].
- [3] Ko Abe et al. Improved constraints on neutrino mixing from the t2k experiment with 3.13×10 21 protons on target. *Physical Review D*, 103(11):112008, 2021.

References (II)

- [4] J. Apostolakis et al. Geometry and physics of the geant4 toolkit for high and medium energy applications. *Radiation Physics and Chemistry*, 78(10):859-873, 2009. ISSN 0969-806X. doi: https://doi.org/10.1016/j.radphyschem.2009.04.026. URL https://www.sciencedirect.com/science/article/pii/ S0969806X09001650.
- [5] A. Blondel et al. The SuperFGD prototype charged particle beam tests. *Journal of Instrumentation*, 15(12):P12003–P12003, dec 2020. doi: 10.1088/1748-0221/15/12/p12003. URL https://doi.org/10.1088%2F1748-0221%2F15%2F12%2Fp12003.
- [6] A Blondel, F Cadoux, S Fedotov, M Khabibullin, A Khotjantsev, A Korzenev, A Kostin, Y Kudenko, A Longhin, A Mefodiev, et al. A fully-active fine-grained detector with three readout views. *Journal of Instrumentation*, 13(02):P02006, 2018.

References (III)

- [7] D. Attie et al. Characterization of charge spreading and gain of encapsulated resistive micromegas detectors for the upgrade of the t2k near detector time projection chambers, 2023.
- [8] Ko Abe et al. Characterization of nuclear effects in muon-neutrino scattering on hydrocarbon with a measurement of final-state kinematics and correlations in charged-current pionless interactions at t2k. *Physical Review D*, 98(3):032003, 2018.
- [9] L Munteanu, S Suvorov, S Dolan, D Sgalaberna, S Bolognesi, S Manly, G Yang, C Giganti, K Iwamoto, and C Jesús-Valls. New method for an improved antineutrino energy reconstruction with charged-current interactions in next-generation detectors. *Physical Review D*, 101(9):092003, 2020.

References (IV)

- Particle Data Group (P A Zyla et al.). Review of Particle Physics. Progress of Theoretical and Experimental Physics, 2020(8), 08 2020. ISSN 2050-3911. doi: 10.1093/ptep/ptaa104. URL https://doi.org/10.1093/ptep/ptaa104. 083C01.
- [11] R. M. Sternheimer. The density effect for the ionization loss in various materials. *Phys. Rev.*, 88:851–859, Nov 1952. doi: 10.1103/PhysRev.88.851. URL https://link.aps.org/doi/10.1103/PhysRev.88.851.
- [12] R.M. Sternheimer, M.J. Berger, and S.M. Seltzer. Density effect for the ionization loss of charged particles in various substances. *Atomic Data and Nuclear Data Tables*, 30(2):261–271, 1984. ISSN 0092-640X. doi: https://doi.org/10.1016/0092-640X(84)90002-0. URL https://www.sciencedirect.com/science/article/pii/ 0092640X84900020.

References (V)

- [13] M Hirschberg, R Beckmann, U Brandenburg, H Bruckmann, and K Wick. Precise measurement of birks kb parameter in plastic scintillators. *IEEE Transactions on Nuclear Science*, 39(4):511–514, 1992.
- [14] O Mineev, A Blondel, Y Favre, S Fedotov, A Khotjantsev, A Korzenev, Yu Kudenko, A Mefodiev, E Noah, D Sgalaberna, et al. Beam test results of 3d fine-grained scintillator detector prototype for a t2k nd280 neutrino active target. *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 923:134–138, 2019.

References (VI)

[15] D. Attié et al. Analysis of test beam data taken with a prototype of TPC with resistive micromegas for the t2k near detector upgrade. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1052:168248, jul 2023. doi: 10.1016/j.nima.2023.168248. URL https://doi.org/10.1016%2Fj.nima.2023.168248.