
SIMULATION AND RECONSTRUCTION
OF INTERACTIONS IN THE UPGRADED
T2K ND280 NEAR DETECTOR
The 24th International Workshop on Neutrinos from Accelerators
21-26 August 2023, Seoul National University, South Korea

Katharina Lachner on behalf of T2K | WG1x6 Parallel Session | 25 August 2023

0,678571428571429

Sub title goes here

Date / location / additional info

mailto:katharina.lachner@warwick.ac.uk


Content

The T2K Near Detector Upgrade

Simulation
Neutrino Interactions
Detector Simulation & Response

Reconstruction
Algorithms for the New Subdetectors
Performance for Momentum Reconstruction and PID

Selections and New Variables for Physics Analyses

Katharina Lachner | 25 Aug 2023 NuFact WG1x6 | T2K ND280 Upgrade Sim&Reco 2



Neutrino Beam

295 km

Mt. Noguchi-Goro
2,924 m

Mt. Ikeno-Yama
1,360 m

1,700 m below sea level

Near Detectors J-PARCSuper-Kamiokande

Upgrade!

The T2K Near Detector Upgrade
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The Off-Axis Near Detector ND280

I Original geometry: I Replacing the π0 detector
with 3 new sub-detectors

I Super Fine-Grain-Detector
(SuperFGD)

I High-Angle TPCs (HA-TPCs)
I Time of Flight planes (ToF)
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SuperFGD and High Angle TPCs

I Polystyrene cubes (1 cm3)
I Three WLS fibres through

each cube ⇒ 3D readout
I High angle & short tracks

I Ar + CF4 + iC4H10 gas mix
I ERAM1 readout (1.1 cm2/pad)

⇒ less channels at higher
resolution, spark protection

182 cubes

56  
cubes

192 cubes

2 tons 
target mass

ERAM

SiPM

32  
pads

36 pads
per ERAM

See also D. T. Nguyen’s talk

1Encapsulated Resistive Anode Micromegas

Katharina Lachner | 25 Aug 2023 NuFact WG1x6 | T2K ND280 Upgrade Sim&Reco 5

https://indico.cern.ch/event/1216905/contributions/5456595/


Simulation



Simulation of Neutrino Interactions
I Generate (anti-)ν with NEUT

generator version 5.4.0 using the
Benhar spectral function model

I Include quasi elastic scattering, 2p2h,
pion production, shallow and deep
inelastic scattering

I Nuclear effects, final state int.

See L. Munteanu and T. Doyle’s talks.

9

dicted rate of a number of neutrino interaction processes,
which exhibit di↵erent true-to-observable mappings, is
constrained by near detector data and then used to inter-
pret the observed far detector data. This section briefly
describes the neutrino interaction model, its associated
uncertainties, and specific studies used to test resilience
to known weaknesses of the model.

A. The Base Interaction Model

The samples of simulated neutrino interactions used in
this analysis were made with version 5.3.3 of the neut
interaction generator [44]. neut simulates known neu-
trino interaction channels relevant for few GeV neutri-
nos; these channels are broadly categorized as: 1p1h,
2p2h, single pion production, and deep inelastic scatter-
ing (DIS). In addition to the ‘primary’ interaction chan-
nels, the e↵ect of using nuclear targets, where the struck
nucleons are bound within a nuclear potential, needs to
be modeled well. These e↵ects can be separated into
initial-state and final-state e↵ects. Most updates to the
interaction model since the previous analysis [26] are in
the treatment of systematic uncertainties; however, a
short description of the whole model is included here for
completeness. As the ‘base’ model has not changed, the
interested reader is directed to Ref. [26] and Ref. [45] for
a discussion of the motivations behind any specific model
choices.

a. Initial-state nuclear e↵ects: Nucleons bound
within a nuclear potential undergo non-negligible ‘Fermi
motion’. For carbon, this means bound nucleons have a
momentum of pf <⇠ 217MeV/c, or equivalently, a Fermi
energy of Ef

<⇠ 25MeV. A Global Relativistic Fermi
Gas (GRFG) is used to model the initial-state nucleon
momentum distribution in this analysis. Neutrino inter-
actions with bound nucleons are largely handled under
the impulse approximation, whereby a single ‘struck’ nu-
cleon receives a four-momentum kick while the rest of the
target nucleus acts as a group of non-interacting ‘spec-
tator’ nucleons. This rudimentary nuclear model is a
simple approximation for the correct modeling of the ini-
tial nucleon momentum distribution and nucleon removal
energy, a study, presented below, accounts for the e↵ect
of this approximation.

b. 1p1h: One particle, one hole interactions are
those where the neutrino interacts quasi-elastically with
a single bound nucleon—the interaction is only quasi -
elastic because of the bound nature of the target nucleon
and, for charged current events (CCQE), the initial-to-
final-state charged-lepton and nucleon rest mass di↵er-
ence. Such interactions are modeled in the Lewellyn–
Smith formalism [46], using the BBBA05 [47] descrip-
tion for the vector part of the nucleon form factors, and
a simple dipole form for the axial part. The neut model
includes two additional features of note: the nucleon re-
moval energy, ‘NRE’, and in-medium modifications to
the W boson propagator via the Random Phase Approx-

imation (‘RPA’). Variations in the average nucleon re-
moval energy modify the predicted kinematics of final-
state particles, most importantly charged leptons. When
comparing predictions based on Fermi Gas nuclear mod-
els to 1p1h-like cross-section data, a suppression at low
four-momentum transfer is favored relative to the free-
nucleon-target calculation [48]. This is often attributed
to a weak-charge screening e↵ect as a result of the nuclear
medium [49]. The e↵ect is termed ‘RPA’ after the ‘Ran-
dom Phase Approximation’ technique used to sum up
the series of contributing W-boson self-energy diagrams.
Here, the distribution of four-momentum transfer is mod-
ified by the RPA calculation from Nieves et. al. [49]. As
can be seen in Fig. 3, 1p1h is the dominant interaction
channel at T2K energies.

FIG. 3: The total charged-current cross section for
muon neutrinos interacting with a carbon nucleus, as
predicted by neut, overlaid on the ND280 muon

neutrino flux, and an example oscillated muon neutrino
flux at SK. The oscillation parameters used here are the
best fit from the previous analysis [26]. The total (Inc)
cross section is separated into 1p1h, 2p2h, single pion
production (SPP), and deep inelastic scattering (DIS)

channels.

c. 2p2h: Two particle, two hole interactions are an
inherently nuclear-target process, whereby the incoming
neutrino interacts with a bound pair of nucleons, knock-
ing both out of the nuclear potential. The Nieves et. al.

model [50] is used to predict the cross-section as a func-
tion of lepton kinematics. While this process is sub-
dominant, it produces observable final states that are
indistinguishable from 1p1h interactions in the T2K de-
tectors, but with di↵erent observed lepton kinematics as
a function of neutrino energy. In the Nieves et. al. 2p2h
model, there are two distinct regions of strength in the

[3]
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Detector Simulation - Overview

I GEANT4: Trajectory in surrounding 0.2 T B-field
I Physics list: QGSP_BERT [4]
I Geometry:

Katharina Lachner | 25 Aug 2023 NuFact WG1x6 | T2K ND280 Upgrade Sim&Reco 8



SuperFGD Response Simulation
I Energy deposit (Bethe-Bloch) ⇒ scintillation (Birks law)

dL
dx

= εscint ·
1

1 + cB · dE/dx
· dE

dx

I Optical cross-talk to adjacent cubes at 3.7% per surface
I WLS fibres, attenuation (463 cm long f. 77%, 33 cm short)
I Collection at SiPMs → el. response → 0-suppr. (3 p.e.)
I Tuned with test beam data [5], cosmics in progress

[6]
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HA-TPC Response Simulation

I Charge drift in E field following Langevin equation

~Vd =
µ

1 + (ωτ)2

(
~E + ωτ

~E × ~B
|~B|

+ (ωτ)2 (
~E · ~B) · ~B
|~B|2

)

I Simulate charge spreading at ERAM readout

ρ(~r , t) = RC
4πt

· exp
(
−r2RC

4t

)
and corresponding waveform (as
conv. with electronics response)

WF(t) =
(∫

A
ρ(~r , t)dx dy

)
~

dResel(t)
dt

Figure 1: A sketch of the resistive Micromegas concept and characteristics.

rays data-taking and one for test and calibration with X-ray photons from
a 55Fe source. Both are fully instrumented with cooling, readout electronics
and DAQ.

In Fall 2018, the global design of the upgraded ND280 detector was fixed.
Two prototypes named MM1 (MM1-DLC1 and MM1-DLC2) with a 75 µm
thick glue layer and a final DLC resitivity close to 200 k⌦/⇤ were produced.
One of these prototypes was mounted on a small TPC with a drift distance
of 15 cm and extensively tested with cosmic rays and at DESY with an
electron beam inside the 0.2 T PCMAG (Persistent Current Superconducting
Magnet) in June 2019 [7]. The different runs aimed at studying the impact
of the main parameters (selection of optimal peaking time for the readout
electronics and anode voltage). The test allowed to validate the ERAM global
design, including the PCB and some design choices for the final front-end
electronics (removal of the external spark protection diodes at AFTER chip
inputs and compatibility of some components for operation in a magnetic field
of the expected strength). In general, the ERAM prototype demonstrated
excellent robustness. It was operated at up to 380 V, collecting a large
amount of signals, and without any damage either on the detector, or on the
electronics. The DESY test beam allowed to further characterize the charge
spreading, the resistive foil uniformity and to ensure that the performance
satisfies the ND280 upgrade requirements with the final pad size.

Following all the validations obtained with the MM0 and MM1 proto-
types, the optimisation of the RC constant of the detector needed to be
tackled, where R is the surface resistivity of the layer and C is the capac-
itance per unit surface determined by the spacing between the anode and
readout planes. Since a lower DLC resistivity means a less efficient spark
protection, the DLC’s resistivity specification was set to 400 ± 60 k⌦/⇤ (fi-

6

[7]
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Reconstruction



SuperFGD Reconstruction
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SuperFGD - Muons (PGun)
Muon momentum resolution for escaping and stopping muons:

Escaping Muons (PGun) Stopping Muons (PGun)

Overall:  
Mean = -0.25% 
RMS = 5.96% 
Peak !t: 
Mean = 0.23% 
Half width = 2.43%

Overall:  
Mean = -0.02% 
RMS = 2.99% 
Peak !t: 
Mean = 0.02% 
Half width = 1.26%

T2K Work 
in Progress

T2K Work 
in Progress

I Resolution: 6% (escaping) and 3% (stopping)
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SuperFGD - Protons (PGun)

Momentum (left) and PID (right) for contained protons:

I Excellent resolution at low momenta down to 300 MeV
I Momentum threshold for protons in FGDs: 450 MeV [8]
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SuperFGD - PID

Confusion matrix for performance of SuperFGD PGun PID:

2022/9/15 17

SFGD Track PID

• Idea is based on track local “dE/dx” analysis with BDTG. The input considers track node 
positions and energies from SFGD SIR track fitter.

• Good identification power among stopping proton, pion, muon and electron.

T2K Work in Progress
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SuperFGD - Shower Identification

5

•Boosted Decision Tree (BDT) is used for PID. 
•Assume a primary vertex where the primary electron starts, and construct a cone. 
•Use the combined information of track/cluster objects inside a cone. 

- 11 variables are used to describe the cone features [backup]. 
- Trained with particle gun samples.  

•We can separate electrons and other particles based on the BDT response.

Signal

Background

Muon vs Electron Proton vs Electron Pion vs Electron

EM Shower PID Output

5
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•Basic concept for gamma rejection 

•  pair from  has overlap around the starting point and dE/dx should be twice as large as 
for a single electron. 

•Use Boosted Decision Tree (BDT). 
- Use the node-level local energy deposits and some track-level variables.

e+/e− γ

Electron/Gamma Separation in SFGD

Signal

BackgroundGamma vs Electron
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6

•Basic concept for gamma rejection 

•  pair from  has overlap around the starting point and dE/dx should be twice as large as 
for a single electron. 

•Use Boosted Decision Tree (BDT). 
- Use the node-level local energy deposits and some track-level variables.

e+/e− γ

Electron/Gamma Separation in SFGD

Signal

BackgroundGamma vs Electron

T2K Work 
in Progress

T2K Work 
in Progress

T2K Work 
in Progress

T2K Work 
in Progress

I Excellent separation of e− vs. γ-induced showers

Katharina Lachner | 25 Aug 2023 NuFact WG1x6 | T2K ND280 Upgrade Sim&Reco 16



HA-TPC Reconstruction
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Figure 1: A sketch of the resistive Micromegas concept and characteristics.

rays data-taking and one for test and calibration with X-ray photons from
a 55Fe source. Both are fully instrumented with cooling, readout electronics
and DAQ.

In Fall 2018, the global design of the upgraded ND280 detector was fixed.
Two prototypes named MM1 (MM1-DLC1 and MM1-DLC2) with a 75 µm
thick glue layer and a final DLC resitivity close to 200 k⌦/⇤ were produced.
One of these prototypes was mounted on a small TPC with a drift distance
of 15 cm and extensively tested with cosmic rays and at DESY with an
electron beam inside the 0.2 T PCMAG (Persistent Current Superconducting
Magnet) in June 2019 [7]. The different runs aimed at studying the impact
of the main parameters (selection of optimal peaking time for the readout
electronics and anode voltage). The test allowed to validate the ERAM global
design, including the PCB and some design choices for the final front-end
electronics (removal of the external spark protection diodes at AFTER chip
inputs and compatibility of some components for operation in a magnetic field
of the expected strength). In general, the ERAM prototype demonstrated
excellent robustness. It was operated at up to 380 V, collecting a large
amount of signals, and without any damage either on the detector, or on the
electronics. The DESY test beam allowed to further characterize the charge
spreading, the resistive foil uniformity and to ensure that the performance
satisfies the ND280 upgrade requirements with the final pad size.

Following all the validations obtained with the MM0 and MM1 proto-
types, the optimisation of the RC constant of the detector needed to be
tackled, where R is the surface resistivity of the layer and C is the capac-
itance per unit surface determined by the spacing between the anode and
readout planes. Since a lower DLC resistivity means a less efficient spark
protection, the DLC’s resistivity specification was set to 400 ± 60 k⌦/⇤ (fi-

6

Two methods: 
PRF, logQ
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HA-TPC Reconstruction Performance
I PGun events with e− and µ− (50 MeV-2.1 GeV)
I PID: pull in dE/dx between measured and expected value
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Muons:

I Spatial resolution 0.45-0.65 mm (current TPCs 0.6-1 mm)
I dE/dx resolution 7.5±1% (current TPCs 7.9±0.2%)
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Selections and New Variables for Physics Analyses



Selection of νµCC0π Events

I νµCC0π purity 90.8% (using SuperFGD+vertical TPC)
I νµCC0π1p purity 99.6% down to 300 MeV protons
I νe selection: ongoing work, currently being validated
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Delayed Coincidences in the SuperFGD
I Neutron reconstruction

from ν̄ via time of flight
I Expected kin. energy

resolution around 20%
with 70 cm lever arm
[9]

I Pion identification and
kinematics reconstruction via
tagging of delayed Michel e−

I Without reconstructed π track
I Improved pion selection

efficiency at low momentum

T2K Work 
in Progress

T2K Work 
in Progress

(Ekin_true - Ekin_reco)/Ekin_true
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Calorimetric Variables

I Precise calorimetry for individual SuperFGD tracks in
reconstruction of visible and hadronic energy, vertex activity

I Motivation: good handle on
∑

Tp in 0π samples
I Overall resolution on total energy deposit: 1.1% (w.o. syst)
I Developing tools to improve calorimetry for single tracks
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Summary

I Multiple tools for reconstruction of muon- and electron
(anti-) neutrinos implemented for SuperFGD&HA-TPCs
I Work in progress for Time of Flight planes

I Low momentum proton momentum reconstruction and PID
works excellent down to 300 MeV

I Selections for νµ CC are being finalised, νe also on the way
I Exciting new analyses in preparation, including first

neutron analysis made possible by the fine granularity
I ND280 upgrade is getting ready for first data this winter!

Thank you for your attention!
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Backup - Simulation



Modelling Nuclear Effects and FSI
I Nuclear ground state: Benhar Spectral Function model
I Interaction models:

I Multi-Nucleon Interactions: Valencia 2p2h
I Single meson production: Rein-Sehgal with lepton

mass corrections for RES and COH
I Shallow and Deep Inelastic Scattering: GRV98 PDF

with Bodek-Yang corrections
I Final state interactions (FSI): cascade models for pion FSI

from Salcedo et al., for Nucleon FSI from Bertini et al.
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Bethe-Bloch Equation
Stopping power in units of energy per density:

−dE
dx

= Kz2 Z
A

1
β2

[
1
2
ln

2mec2β2γ2Wmax

I 2 − β2 − δ(βγ)

2

]

Where:
I K = 4πNAr2

e mec2

I Wmax ... max. energy transfer to e−
I I ... mean excitation energy
I δ(βγ) ... density correction

552 34. Passage of Particles Through Matter

 1

 2

 3

 4

 5

 6

 8

10

1.0 10 100 1000 10 0000.1

Pion momentum (GeV/c)

Proton momentum (GeV/c)

1.0 10 100 10000.1

1.0 10 100 10000.1

βγ = p/Mc

Muon momentum (GeV/c)

H2 liquid

He gas

C
Al

Fe
Sn

Pb〈–
d
E

/d
x〉

 (
M

eV
 g

—
1
cm

2
)

1.0 10 100 1000 10 0000.1

Figure 34.2: Mean energy loss rate in liquid (bubble chamber)
hydrogen, gaseous helium, carbon, aluminum, iron, tin, and lead.
Radiative e�ects, relevant for muons and pions, are not included.
These become significant for muons in iron for —“ & 1000, and at
lower momenta for muons in higher-Z absorbers. See Fig. 34.23.
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Figure 34.3: Mass stopping power at minimum ionization for
the chemical elements. The straight line is fitted for Z > 6. A
simple functional dependence on Z is not to be expected, since
dE/dx also depends on other variables.

creases, and at even lower velocities contributions from L and
higher shells further reduce it. The correction (C K + C L + . . .)/Z
is should be included in the square brackets of Eq. (34.5). It is cal-
culated and tabulated (for a few common materials) in a number
of places; Refs. [6,12,21] are especially useful. As an example, the
shell correction for a 30 MeV proton traversing aluminum is 0.6%,
increasing to 9.9% as the proton’s energy decreases to 0.3 MeV.

Barkas correction zL1. Qualitatively, one might imagine an
atom’s electron cloud slightly recoiling at the approach of a nega-
tive projectile and being attracted toward an approaching positive
projectile. Hence the stopping power for negative particles should
be slightly smaller than the stopping power for positive particles.
In a 1956 paper, Barkas et al. noted that negative pions possibly
had a longer range than positive pions [8]. The e�ect has been
measured for a number of negative/positive particle pairs, and
more recently in detailed studies with antiprotons at the CERN
LEAR facility [22]. Since no complete theory exists, an empirical
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Figure 34.5: Mean excitation energies (divided by Z) as adopted
by the ICRU [12]. Those based on experimental measurements
are shown by symbols with error flags; the interpolated values
are simply joined. The grey point is for liquid H2; the black
point at 19.2 eV is for H2 gas. The open circles show more recent
determinations by Bichsel [13]. The dash-dotted curve is from the
approximate formula of Barkas [14] used in early editions of this
Review.

approach is necessary. A 1972 harmonic-oscillator model by Ash-
ley et al. [23] is often used; it has two parameters determined by
experimental data. For protons in aluminum, L1/La is less than
0.1% at 30 MeV, but increases to 17% as T decreases to 0.3 MeV.
This correction is indicated in Fig. 34.1.

Bloch correction z2L2. Bloch’s extension of Bethe’s theory in-
troduced a low-energy correction that takes account of perturba-
tions of the atomic wave functions. The form obtained by Lind-
hard and Sørensen [11] is used e.g. in Refs. [6,21]. For protons in
aluminum,≠L2/L| is less than 0.3% at 3.0 MeV, but rises to 7%

[10]
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Density Correction Term δ(βγ)

Density correction is calculated using Sternheimer
parametrisation [11] with constants for polystyrene from [12]:

δ(βγ) =


2 ln(10)x + c if x ≥ x1

2 ln(10)x + c + a(x1 − x)k if x0 ≤ x < x1

0 if x < x0 (nonconductors)

Where:
I x = log10(βγ)
I x0 = 0.1647
I x1 = 2.5031

I c = −3.2999
I a = 0.16454
I k = 3.2224
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Scintillation in the SuperFGD

Apply Birks quenching on each SuperFGD hit-segment’s dE/dx:

E reco
hit [p.e.] = corrBirks

(
dxn, En[MeV] ·ccalib

)
× (En[MeV] ·ccalib )

...for light yield En in p.e. along distance dxn = 10 mm (one
cube), with the following corrections:
I corrBirks(dx,E) = 1

1+ cB E/dx
, with Birk’s constant

cB = 8.98 · 10−3 cm/MeV [13]
I Empirical calibration constant ccalib = 320 p.e./MeV from

CERN testbeam data (to be updated when SFGD runs)

Katharina Lachner | 25 Aug 2023 NuFact WG1x6 | T2K ND280 Upgrade Sim&Reco 28



SuperFGD Electronics Response

Work by C. McGrew
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SuperFGD Test Beam → Sim. Constants

Simulation constants from test beam results:

Bragg peak (0.75 GeV protons), Optical cross-talk (6 GeV protons)
[5, 14]
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ERAM Gain Simulation

Accounting for fluctuations from the calibration result for the
gain G (measured per-pad in 55Fe X-Ray scan):
I Each pad’s gain is smeared following an exponential

distribution
I Corrections for fluctuations in avalanche processes,

non-uniformity in the surface etc. are applied
I In particular, each arriving ionisation charge is assigned an

effective gain picked from a Polya distribution
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ERAM Charge Spreading
Charge in leading vs. neighbouring pad by track position:

Results from test beam [15]:
⇒ Data from test beam
at DESY 2021 data was
reproduced by simulation
with RC = 100 ns/mm2
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Backup - Reconstruction



SuperFGD Reconstruction

I 3D matching and charge sharing with likelihood fit and
entropy maximation

I Reject “ghosts” (shadow tracks) with charge cut and
re-apply charge sharing

I Apply clustering algorithm (DBScan)
I Pattern recognition: order hits with minimal spanning tree
I Track fitting with sequential importance re-sampling

particle filter
I Boosted Decision Tree (BDT) for track mom. and PID:

dE/dx per cube position
I BDT for showers: clusters in cone shape from vertex
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SuperFGD 3D Matching, Charge Sharing

I 3D matching
I 3D hit created for every combination of 3 intersecting

active fibres within 100 ns
I Charge sharing

I Likelihood fit for charge sharing: all hit charges have
to add up to readout (after attenuation correction)

I Entropy maximisation (
∑

Q lnQ) to avoid
degeneracies (priority on higher charges and shorter
distances)
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SuperFGD Track Fitting
I A sequential importance re-sampling particle filter is used

for track fitting (very similar to Kalman filter)
1. High number of random priors
2. Sequentially update prior with

new points (cubes)
3. Weigh samples (likelihood)
4. Average sample and repeat
5. Re-sample posteriors at

convergence at weight zero
I BDT for track mom. and PID: dE/dx per cube position
I BDT for showers: clusters in cone shape from vertex

Katharina Lachner | 25 Aug 2023 NuFact WG1x6 | T2K ND280 Upgrade Sim&Reco 36



BDT for SuperFGD tracks
22 Input parameters:

2021/12/13 T2K Plenary: ND280 Upgrade 232323232323232323

Primary vertex

Vertex region

dE/dx not used

TMVA Input Parameters • Input parameter list: (22 in total)

Ř Node local dE/dx [9]: 3 nodes at the track 
beginning (after vertex cut) and 6 nodes at the 
track end.

ř Node distance [7]: Distance between two 
neighboring nodes.

Ś dE/dx fluctuation [2]: (Only for PID) Mean and 
standard deviation of dE/dx drop along the track.

ś Total track length [1]: Computed from the first 
node (without vertex cut).

Ŝ Track energy deposition [1]: Computed from the 
4th node (with vertex cut).

ŝ Track direction [2]: Polar angle and azimuth angle.

T2K Work 
in Progress

Work by X. Y. Zhao
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Muon momentum resolution for SuperFGD

Distribution across full momentum range (backup to slide 13)
for escaping (left) and contained tracks (right):
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BDT for showers I/II

Work by A. Eguchi
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BDT for showers II/II

Work by A. Eguchi
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Neutrons out of FV
Out of FV background for neutron selection:

Work by A. Teklu
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HA-TPC Reconstruction

I Preparation of hits from fitted
waveforms

I Pattern recognition with A-STAR
based algorithm

I Position reconstruction per cluster
I Track fitting: circular or parabola fit
I Obtain momentum from helix fit
I PID based on momentum &

comparison of measured and
expected dE/ dx for particle
hypothesis
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HA-TPC Spatial resolution
Using logQ vs. Pad-Response-Fit (PRF) track fit
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HA-TPC Reconstruction: PID
Pull distributions for e− vs. µ− by momentum:

where δE(i) = CT−CE(i)
σE(i)

⇒ 6.6σE(µ) separation power for muon hypothesis
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HA-TPC dE/dx Reconstruction
For vertical electrons and muons, 0.05 GeV/c to 2.1 GeV/c:
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HA-TPC Momentum Reconstruction

Example: muons at 800 MeV:
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Global Reconstruction
Track matching between sub-detectors ⇒ combined
momentum:

T2K Work 
in Progress

T2K Work 
in Progress

I Global reconstruction for SuperFGD and (vertical) TPC
I Combination with High-Angle TPCs is work in progress
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νµCC-inclusive Selection Purity

I νµCC-incl. purity 94.6%, efficiency 64.7%
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