

Status of muon g-2/EDM experiment at J-PARC

Yuta Okazaki (KEK IPNS) on behalf of the J-PARC muon g-2/EDM collaboration

2023.08.25

@ NuFact 2023 (Seoul National University)

Muon g-2/EDM

- Muon anomalous magnetic moment (g-2)
 - 5.0 σ discrepancy between FNAL measurement and prediction
 - Measurement (FNAL) : 116 592 055(24) × 10⁻¹¹ (200 ppb)
 - SM prediction : 116 591 810(43) × 10⁻¹¹ (370 ppb)
 - Can be a contribution from new physics
- Muon EDM
 - Upper limit given by BNL : 1.8 × 10⁻⁹ e · cm (95% C.L.)
 - EDM and g-2 can be induced by the same new physics

Muon g-2/EDM measurement

Muon g-2/EDM can be obtained by measuring the muon spin precession in a uniform B-field.

• We can reconstruct time dependent spin information by decayed positron energy and momentum.

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1}\right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right) \right]$$

$$\vec{\omega} = \vec{\omega_a} + \vec{\omega_\eta}$$

BNL/FNAL experiment

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \left| \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

3

= 0

- To focus muons in the storage volume, electric field is necessary.
- Magic gamma is selected to cancel out 2nd term.
 - p = 3.1 GeV/c
 - muon orbit : φ = 14 m (B = 1.45 T)

Muon g-2/EDM measurement

J-PARC experiment

- The electric field is not used to focus the muon beam.
 - A weak gradient magnetic field is used instead.
 - Utilize low emittance muon beam by reaccelerated thermal muon.

- Measurement at lower muon momentum becomes possible.
 - \rightarrow A compact magnetic storage ring with better uniformity of B-field.
 - $p = 0.3 \text{ GeV/c}, \phi = 0.66 \text{ m} (B = 3 \text{ T})$
- Independent measurement of muon g-2 to validate BNL/FNAL result with different systematic uncertainty.
- Measure g-2 and EDM signal simultaneously.

Muon g-2/EDM measurement

J-PARC experiment

- The electric field is not used to focus the muon beam.
 - A weak gradient magnetic field is used instead.
 - Utilize low emittance muon beam by reaccelerated thermal muon.

Muon g-2/EDM experiment at J-PARC

- Beam storage without electric field.
- High-precision uniform magnetic field.
- Track reconstruction using the silicon detector.

J-PARC MLF

J-PARC (Japan Proton Accelerator Research Complex)

MLF (Materials and Life science experimental Facility)

- Beam Power : 1 MW
- 25 Hz rep.
- Use H-line (H2) under construction

Surface µ+ beam

MLF H2 beam line.

- Target : Graphite
- Surface μ^+ beam : 4 MeV with 25 Hz rep.
- Beam rate : 1.2×10^8 muons/s is expected at the Mu production target (1 MW proton beam).
- H2 area (radiation shield and PPS) was constructed (inside the existing MLF bldg.)

H-line experimental building

A new extension building will be constructed.

- The design will be completed in FY2023.
- The construction is scheduled to start next year.

Muon cooling

Cool surface muons before reacceleration

- Silica aerogel target : Stop surface muons, and thermal muoniums are emitted.
- Laser ablated aerogel for muonium production target.

via 1S-2S

via 1S-2P

Muon acceleration

Muon reacceleration to 300 MeV/c by muon LINAC.

• 4 types of cavities used.

USM acceleration test

A USM acceleration demonstration is ongoing at MLF S2 line.

- Measure the USM beam properties with real SOA chamber
 - Mu ionization by the 1S-2S laser
 - Muon acceleration up to 80 keV
 - Profile, emittance, signal rate
- Analysis is on going.

Beam injection

3D spiral injection scheme is adopted for muon beam injection into the storage region.

- Tuning of beam phase space & pulsed B-field
- Expected injection efficiency : ~ 85%

Injection region :

Fringe B-field of solenoid

• Reduces beam pitch angle by B_r.

Kick region :

Pulsed B-field by kicker coil

• Vertical kick of beam by B_r.

Storage region :

Weak-focusing B-field

Beam storage with betatron oscillation.

Demonstration is on going by using a electron beam

Storage magnet

High uniform (0.1 ppm) magnetic field will be achieved by shimming.

- Compact solenoid magnet based on MRI magnet technology.
- B-field measurement by a high precision NMR probe.

Field mapping system under design

- B-field measurement in the muon storage region.
- Vertical and azimuthal motion.

Positron detector

- Silicon detector is used to measure the decay time and momentum of positrons generated by muon decay.
 - Silicon strip sensor : Hamamatsu S13804, 190 μ m pitch ullet
 - High hit rate capability (Max : 6 tracks/ns) and stability against rate changes (1.4 MHz - 10 kHz)
 - positrons (p = 200 275 MeV/c)

Positron detector

- Major components are in or completed the mass-productions.
- Assembly procedure is under R&D.
- A minimum unit of the detector is under readout electronics test.

FPGA readout board

- 2 Xilinx Artix-7 FPGAs to suppress hit data of 32 ASICs
- 2 SFPs for receiving clock/trigger signals and sending the hit data

ASIC board

- 8 ASICs (SliT128D)
 - Rising time < 50 ns
 - Time-walk < 1 ns
 - Process 128 ch hit data

φ 580 mm

Sensor alignment

- Precise alignment between detector and B-field is essential for muon EDM measurement.
 - If the alignment is off, "g-2 component" of spin precession comes into "EDM component" *g*²由来のスピン ^{*i*} ^{*i}*
- Goal : 1 μ m rotation and 20 μ m tilt of each sensor.
 - Precision (rotation) of 2 prevalues achieved by using sensor alignment jig #aGMM for sensor alignment jig #aGMM for sensor position/shape measurement
- Track-based alignment during physics DAQ and interferometer based alignment monitor are under

17

DAQ system

Principle of clock/trigger distribution

Adopting clock-duty-cycle-modulation (CDCM) as a core technology

- CDCM is a data-on-clock type modulation. (8b10b is a clock-on-data type)
- Data bits are embedded to the trailing edges of the clock signal.

Denis Calvet, IEEE TNS (Volume: 67, Issue: 8, Aug. 2020)

Ryotaro Honda, 23rd IEEE Real time

Advantages

- This modulated clock can be directly input to PLLs and MMCMs in FPGA and external jitter cleaner ICs.
- Output clock skews from MMCMs respect to the input modulated clock are automatically adjusted by using the global clock network in FPGA.
 - Automatic phase alignment among front-end electronics.

Clock/trigger distribution test

Jitter measurement : ~ 10 ps < 30 ps (requirement)

- Time Interval Error measurement
 - Periodic jitter (RMS) : 2.3 ps
 - Random jitter (RMS) : 3.4 ps
- Phase jitter between master and slave clocks :
 6.1 ps

Schedule

Physics data taking expected from JFY 2028.

JFY	2022	2023	2024	2025	2026	2027	2028 and beyond
KEK							
Buuget							
Surface muon	✓ Beam at H1 are	a	2	r Beam at H2 area	3		ning ing
Bldg. and facility		*	Final design		*	Completion	nissio a tak
Muon source		★ Ionization test	at S2	★ Ionization tes	t at H2		Comn Data
LINAC		* 8	0keV acceleration	@S2 ★ 4.3 MeV@	H2 ★	tabrication compl	210 MeV ete
Injection and storage		★ C elec	ompletion of tron injection test			*	muon injection
Storage magnet				★ B-field probe ready	2	★ Install ★ Shimn	ning d <mark>one</mark>
Detector	✓	Quoter vane proto	type 🔺 N	Mass production re	eady	★ Installati	on
DAQ and computing		★ grid servic ★ co reso	ce open 🛛 ★ sr ommon computing urce usage start	nall DAQ system operation test	Ready		
Analysis			*	Tracking software	ready Analysis software	ready	

Expected sensitivity

22

Total efficiency of muon will be 1.3×10^{-5} .

(The expected number of positrons is 5.7×10^{11} for 2.2×10^7 s)

Muon g-2

- Systematic uncertainty : less than 70 ppb
- Statistical uncertainty : 450 ppb (2.2×10^7 s
 - ~ 2 years of data taking) \rightarrow 100 ppb (Final)
 - Uncertainty comparable to BNL can be reached.
 - Possibility of further improvement under discussion.

Muon EDM

- Systematic uncertainty : $0.4 \times 10^{-21} e \cdot cm$
 - mainly from detector mis-alignment
- Statistical uncertainty : 1.5 × 10⁻²¹ e · cm

bubsystem	Efficiency	Subsystem	Efficiency
I-line acceptance and transmission	0.16	DAW decay	0.96
Au emission	0.0034	DLS transmission	1.00
aser ionization	0.73	DLS decay	0.99
Aetal mesh	0.78	Injection transmission	0.85
nitial acceleration transmission and decay	0.72	Injection decay	0.99
RFQ transmission	0.95	Kicker decay	0.93
RFQ decay	0.81	e^+ energy window	0.12
H transmission	0.99	Detector acceptance of e^+	1.00
H decay	0.99	Reconstruction efficiency	0.90
DAW transmission	1.00		

Anomalous spin precession (ω_a)

Source	Estimation (ppb)
Timing shift	< 36
Pitch effect	13
Electric field	10
Delayed positrons	0.8
Diffential decay	1.5
Quadratic sum	< 40

Magnetic field (ω_p)	
Source	Estimation (ppb)
Absolute calibration	25
Calibration of mapping probe	20
Position of mapping probe	45
Field decay	< 10
Eddy current from kicker	0.1
Quadratic sum	56

Summary

- Muon g-2/EDM experiment at J-PARC aims to measure muon g-2/EDM by utilizing
 - Low emittance muon beam stored by weak focusing magnetic field.
 - Compact storage magnet with low momentum muon.
- An independent measurement from BNL/FNAL with different systematics.
- All sub-system of this experiment are getting ready for realization.
 - Some of them are already in "construction phase".
- Expected data taking from JFY 2028.
- After 2 years of data taking,
 - muon g-2 measurement at 450 ppb (stat.) : comparable to BNL
 - muon EDM sensitivity at $1.5 \times 10^{-21} \text{ e} \cdot \text{cm}$ (stat.) : 2 orders of magnitude improvement.

Back up

Laser ablated aerogel target

- Laser ablated aerogel target has been developed
 - Small holes at surface by irradiation of fs laser.
 - Increase surface area : only Mu near the surface are emitted to vacuum

Laser development

- Two possible choice of excited state = wavelength: Pros and Cons
 - 2P state: 122nm for excitation & 355nm for unbound

Plan A

2P state

2S state: 2 × 244nm for excitation & 244nm for unbound

- - Large cross section. Less laser energy.
 - Long history @ KEK •
 - Easier alignment. (Robust)
- Cons
 - $\lambda = 122$ nm: difficult to generate
 - Handling is difficult: \times air
 - Damage of optics (photon eneryg)

Pros

- λ=244nm: well-established
- Doppler free

2S state

- Selectively excites spin triplet: better spin polarization.
- Cons
 - Small cross section: Two photon
 - Precise alignment is required
 - Damage of optics (high intensity)

Multi-layer target

Mu emission efficient (0.0034): • Muon stopping (0.418) • Mu formation (0.52)	су	Single-layer	Multi-layer (6 layers, Interval = 7 mm)
 Vacuum emission (0.06 Laser spatial constrain 	0) Muon t (0.259)pping	0.418	0.454
	Mu formation	0.52	0.52
	Mu vacuum yield	0.058	0.179
	Laser spatial constraints	0.264	0.283
	Total efficiency	0.0034	0.012

Demonstration beamline

- Construct demonstration beamline (@LINAC bldg.)
 - > Particle : *e* ⁻
 - Momentum : 297 keV/c
 - Storage solenoid field : 82.5 x 10⁻⁴ T
- Component to tune the beam
 - Rotatable quadrupole magnet: XY-coupling
 - X/Y-steering coil: Injection angle

Trajectory

Track finding algorithm

- 1. Decide the time window and search for reconstructed hits in a straight line in (z,ϕ) plane in this time widow
- Select 3 hits (seeds) from hits on the same line and extrapolate a helix orbit to neighboring vanes to find hits consistent with the same track
- 3. If a hit satisfies the condition to be regarded as the same track origin, update seeds for searching and repeat an extrapolation until there is no candidate to be added.
- 4. Repeat the same procedures in backward
- 5. If a track candidate includes more than 4 hits, that candidate is regarded as a "reconstructed track" and hits used in this track are removed for further track finding
- 6. Repeat the procedures 2-5 until there is no candidate hit
- 7. Move time window to the next and repeat the same procedures

Statistical uncertainty

Relativistic factor of muons

Normalization to the oscillation term of the decayed positron

$$N(t) = N_0 e^{-t/\gamma\tau} [1 - A\cos(\omega_a t + \phi)]$$