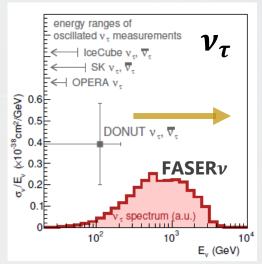
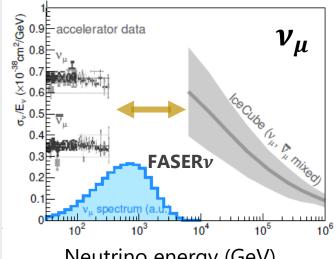
New results on LHC neutrinos from the FASER experiment

Tomoko Ariga (Kyushu University) on behalf of the FASER Collaboration

FASER is supported by:

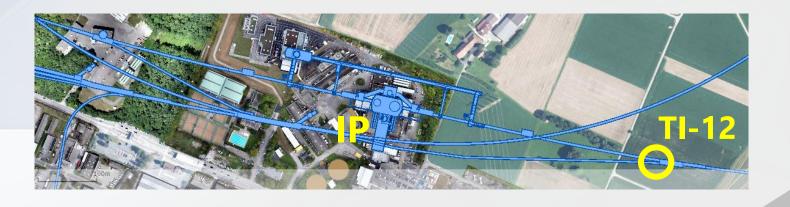
Neutrinos at the LHC

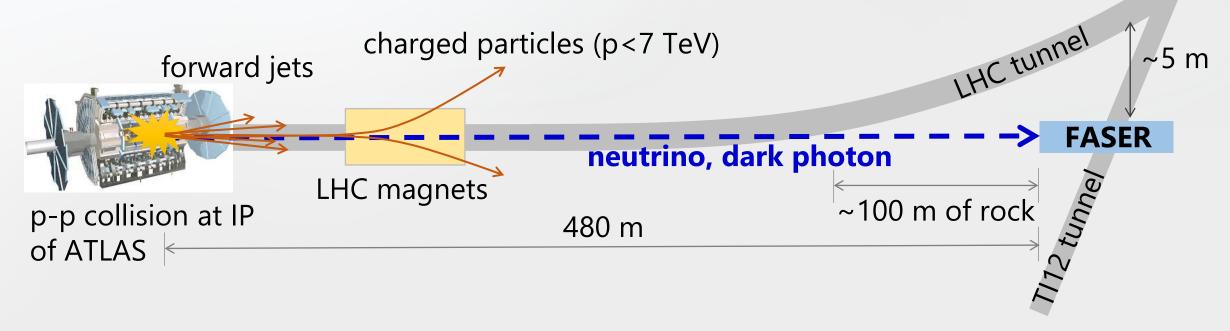

- Large production of neutrinos at the LHC
 - High energy frontier of man-made neutrinos
- There has been a longstanding interest, e.g.,
 - A. De Rujula and R. Ruckl, "Neutrino and muon physics in the collider mode of future accelerators", 1984
- But no neutrinos had ever been directly detected at a collider.
- In 2018, the FASER collaboration was formed and began investigating far-forward locations near ATLAS, TI-18 and TI-12, to directly detect and study collider neutrinos.
 - First neutrino interaction candidates at the LHC
 - First direct observation (of v_{μ} CC interactions)


Phys. Rev. D 104, L091101 (2021)

Phys. Rev. Lett. 131, 031801 (2023)

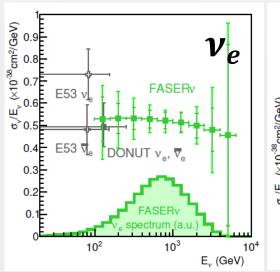
FASER measures highest-energy man-made neutrinos

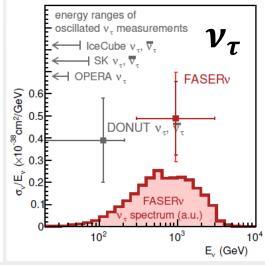




Neutrino energy (GeV)

Location and beamline

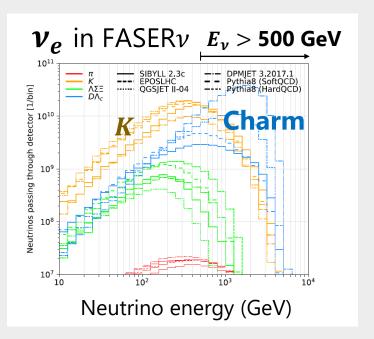




- Because the neutrinos have \sim TeV energies, we can detect many with just a 1-ton detector.
- The transverse spread of TeV neutrinos from pion decay is only \sim 10 cm after propagating 480 m. The detector is aligned with the line of sight (LoS) which maximizes the rate and energy of neutrinos of all flavors.
- 100 m rock implies that the only background to neutrinos from ATLAS are muon-induced events.

FASER_v physics potential

- (1) Study high-energy neutrino interactions
- Cross sections of different flavors at TeV energies:
 FASER probes unexplored energy range.
- Neutrino CC interactions with charm production $(vs \rightarrow lc)$
- Nuclear PDFs



(2) Use neutrinos as probe of **forward hadron production**

- Neutrinos produced in the forward direction at the LHC originate from the decay of hadrons, mainly pions, kaons, and charm particles.
- FASERν's measurements provide novel input to QCD (low-x PDFs, intrinsic charm, saturation) and astroparticle physics (prompt atmospheric neutrinos, cosmic ray muon puzzle)
- First data on forward charm, hyperon, and kaon

Neutrinos from charm decay is relevant for neutrino telescopes (such as IceCube) for understanding the prompt atmospheric neutrino production (currently very poorly constrained).

The FASER detector

"The FASER Detector", arXiv:2207.11427 Front Scintillator veto system Two 20mm scintillators **Tracking spectrometer stations** Scintillator 350×300mm wide 3 layers per station with 8 ATLAS SCT veto system TO ATLAS IP barrel modules in each layer Three 20mm scintillators Electromagnetic 300×300mm wide Calorimeter Decay volume 4 LHCb outer EM calorimeter modules **FASERy** emulsion **Interface** detector Tracker (IFT)

Trigger / pre-shower scintillator system

0.57 T dipoles200 mm aperture1.5 m decay volume

Magnets

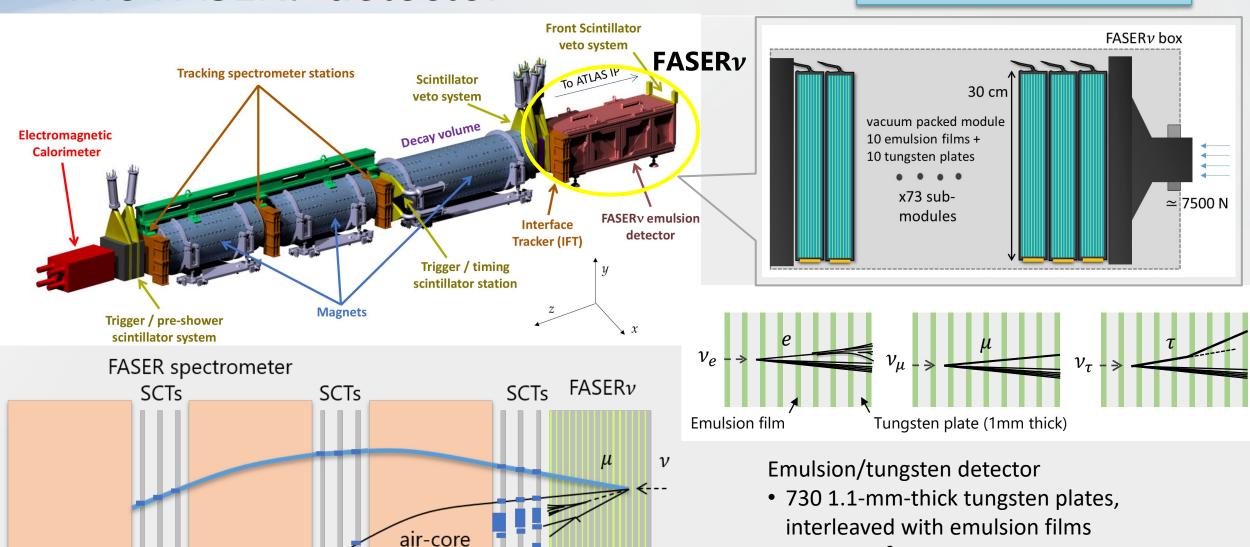
Trigger / timing scintillator station

10-mm-thick scintillators with dual PMT readout for triggering and timing measurement (σ =400 ps)

1.1-ton detector 730 layers of 1.1-mm-thick tungsten + emulsion neutrino target and tracking detector ($8\lambda_{int}$)

Successful data taking 50 Preliminary 40 Preliminary LHC P1 Stable (ATLAS) FASER Recorded FASER Recorded Calo Filters Installed Total Delivered: 38.5 fb⁻¹ Total Recorded: 37.0 fb⁻¹ Day in 2022

Constraints on unexplored dark photon parameter space

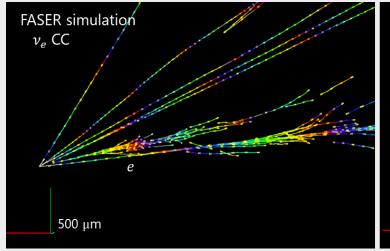

"Search for Dark Photons with the FASER detector at the LHC", arXiv:2308.05587

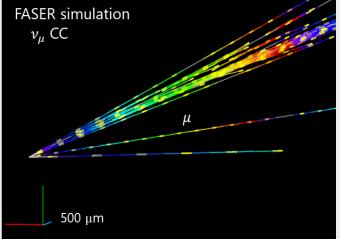
The FASER_v detector

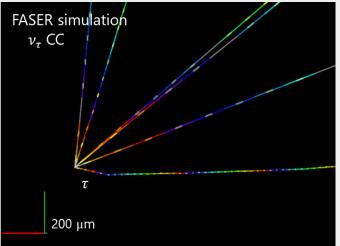
2023/8/21

See also <u>Jeremy Atkinson's talk</u> in WG2 on Aug 25, "Operation and results of the FASER ν detector"

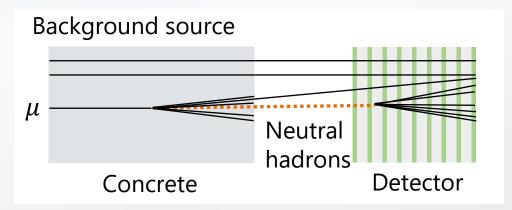
• 25×30 cm², 1.1 m long, 1.1 tons

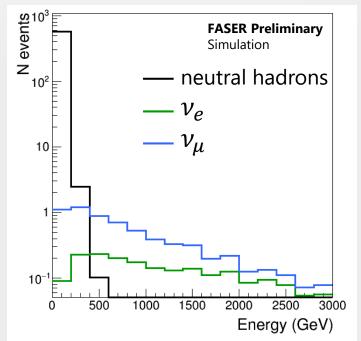

magnet


Expected neutrino event rates


Based on F. Kling and L. J. Nevay, "Forward Neutrino Fluxes at the LHC", Phys. Rev. D 104, 113008

Expected number of CC interactions (250 fb⁻¹)


Gene	erators	${ m FASER} u$			
light hadrons	heavy hadrons	$ u_e + \bar{ u}_e $	$ u_{\mu} + \bar{ u}_{\mu}$	$ u_{\tau} + \bar{\nu}_{\tau} $	
SIBYLL SIBYLL		1501	1501 7971		
DPMJET DPMJET		5761 11813		161	
EPOSLHC	Pythia8 (Hard)	2521	9841	57	
QGSJET	SSJET Pythia8 (Soft)		8918	26.8	
Combination (all)		2850^{+2910}_{-1348}	9636^{+2176}_{-1663}	67.5_{-43}^{+94}	
Combination	(w/o DPMJET)	1880^{+641}_{-378}	8910^{+930}_{-938}	$36^{+20.8}_{-11.5}$	

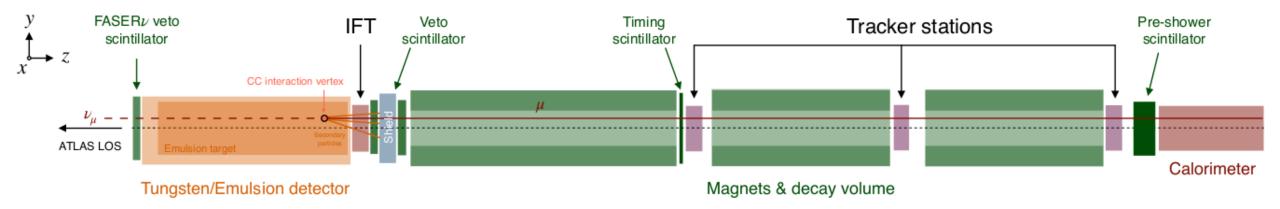


Main background source

- There is a flux of 0.5 Hz/cm² of high energy muons traversing FASER from IP1 at the highest luminosity.
- The muons rarely produce neutral hadrons in the upstream concrete and inside the detector, which can mimic neutrino interaction vertices.
- Most of the produced neutral hadrons are low energy.

	Interaction rates of neutral hadrons with $E_{\rm h}$ >200 GeV in 150 tungsten plates per incident muons			
$K_{\mathcal{S}}$	2.1×10^{-5}			
K_L	2.5×10^{-4}			
n	2.0×10^{-4}			
Λ	2.3×10^{-4}			
$\overline{\Lambda}$	3.1×10^{-5}			

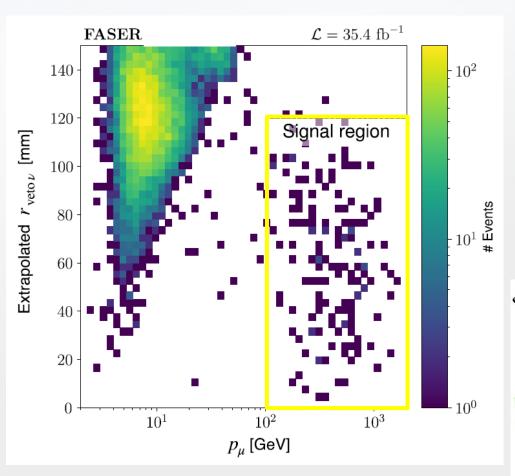
First direct observation of ν_{μ} interactions at the LHC


by the FASER electronic detectors

Phys. Rev. Lett. 131, 031801 (2023)

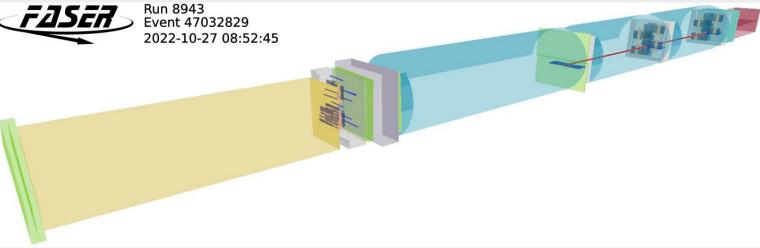
Event selection

- Collision event with good data quality (35.4 fb⁻¹)
- No signal in two front veto scintillators ($<40 \text{ pC}\sim0.5 \text{ MIP}$)
- Signal in last two veto layers
- Signal and pre-shower scintillators consistent with ≥1 MIPs
- Exactly one good quality spectrometer track with p > 100 GeV
- Track in fiducial tracking volume, r<95 mm
- Track extrapolate to r<120 mm in front veto scintillator
- Track polar angle less than 25 mrad


- Signal expectation
 - -151 ± 41 events
 - Uncertainty from DPMJET vs SIBYLL
- Background estimate
 - Neutral hadrons: 0.11 ± 0.06 events
 - Scattered muons: 0.08 ± 1.83 events
 - Front veto inefficiency: negligible

First direct observation of ν_{μ} interactions at the LHC

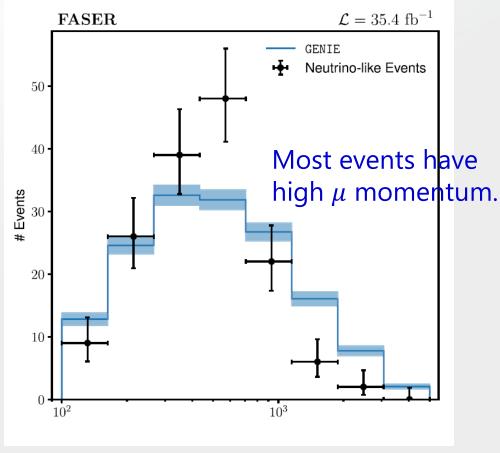
by the FASER electronic detectors

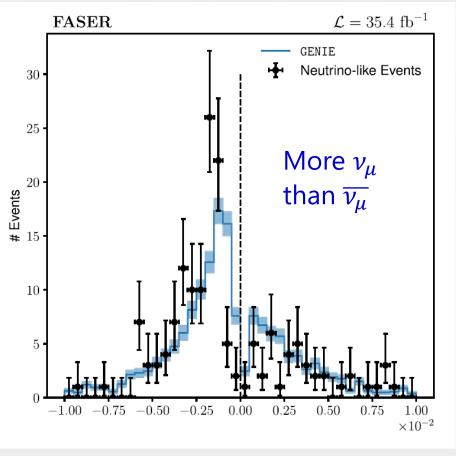

Phys. Rev. Lett. 131, 031801 (2023)

Unblinded results:

153 events in the signal region (significance of 16σ)

First direct observation of ν_{μ} interactions at the LHC using FASER ν as a target




First direct observation of ν_{μ} interactions at the LHC

by the FASER electronic detectors

Phys. Rev. Lett. 131, 031801 (2023)

Signal event distributions

Reconstructed momentum p_{μ} (GeV)

 q/p_{μ} (GeV⁻¹)

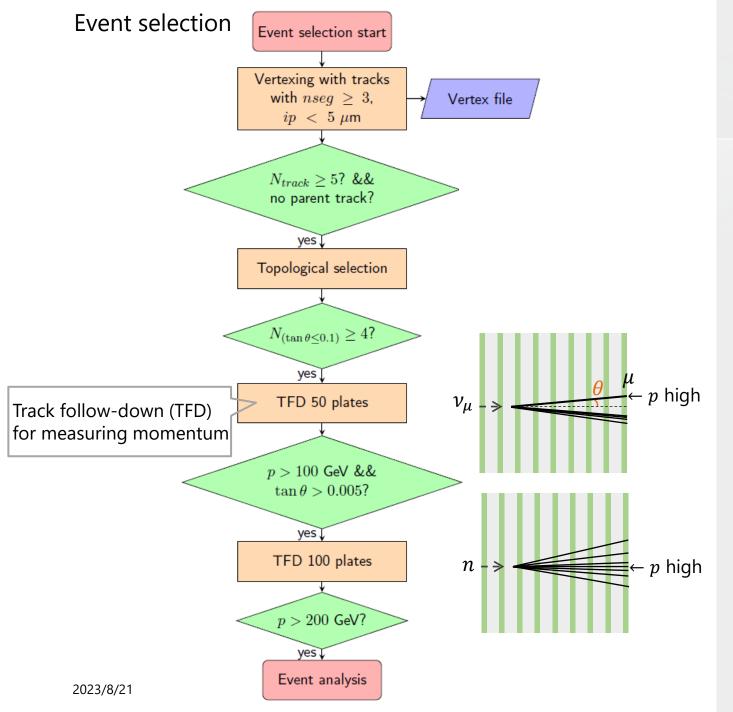
New results

from the FASER_v emulsion detector

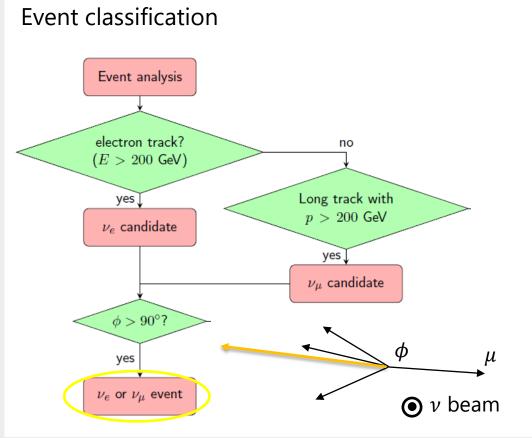
ν→ Zone 3+4

Strategy of the analysis

- Analyzing 250/730 films of the 2022 2nd module
 - 150 films for vertex reconstruction and 100 films for momentum/energy measurements
- Detecting v_e and v_μ CC interaction candidates with a high-energy selection (p_{lep} >200 GeV) towards cross section measurements (and flux constraints)
- (Due to the lack of charge measurement, we measure the sum of $v_e + \overline{v_e}$ and the sum of $v_\mu + \overline{v_\mu}$.)

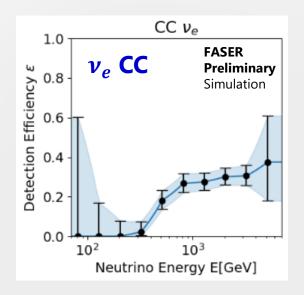

module name	installed period	load	integrated luminosity
			per module (${ m fb}^{-1}$)
2022 1st module (F221)	Mar 15 - Jul 26	30%	0.4705
2022 2nd module (F222)	Jul 26 - Sep 13	100%	9.523
2022 3rd module (F223)	Sep 13 - Nov 29	100%	28.9082

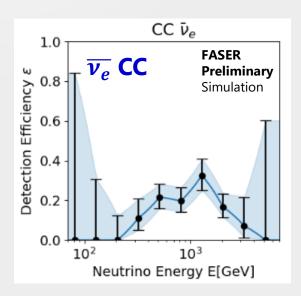
Target volume for the first analysis (150 tungsten plates)

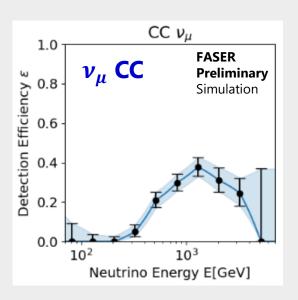

Target mass (zone 3+4)

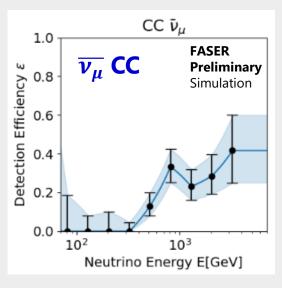
- \simeq 9 cm x 24 cm x 0.1087 cm x 150 x 19.3 g/cm³
- = 68.0 kg

New results from FASERv: event selection procedure

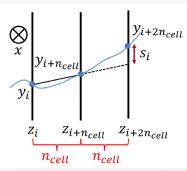


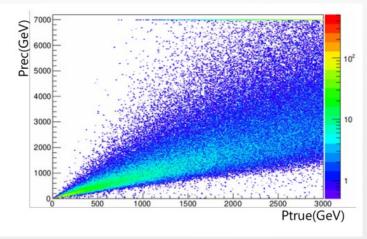

New results from FASERν: efficiencies

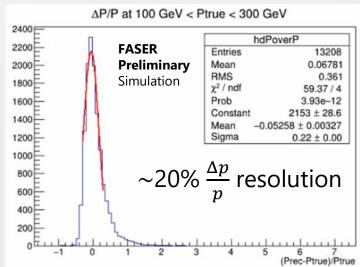

Breakdown of the efficiencies


Selection	$ u_e$ CC	ν NC	K_L	n	Λ
	1.000	1.000	1.000	1.000	1.000
Vertex reconstruction	0.516	0.336	0.813	0.803	0.753
E>200 GeV	0.340	0.001	0.000	0.000	0.000
$E>$ 200 GeV, $tan \theta>$ 0.005	0.270	0.001	0.000	0.000	0.000
$E>$ 200 GeV, $ an heta>$ 0.005. $\Delta\phi>$ 90deg	0.226	0.000	0.000	0.000	0.000

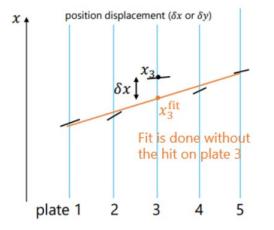
Selection	$ u_{\mu}$ CC	ν NC	K_L	n	Λ
	1.000	1.000	1.000	1.000	1.000
Vertex reconstruction	0.446	0.336	0.813	0.803	0.753
p >200 GeV	0.284	0.071	0.028	0.026	0.018
$p>$ 200 GeV, tan $\theta>$ 0.005	0.236	0.051	0.007	0.013	0.007
$p>$ 200 GeV, $\tan \theta >$ 0.005. $\Delta \phi >$ 90deg		0.004			

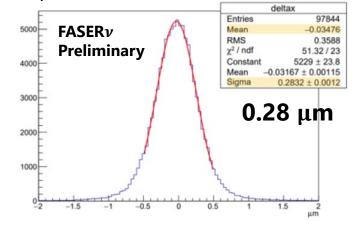


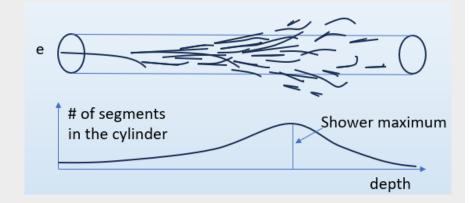


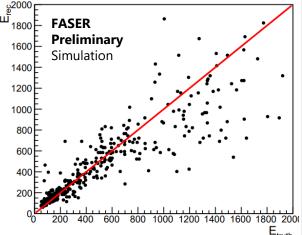


New results from FASERν: detector performance


Momentum measurement




Position resolutions (after ~100 plates reconstruction)



Electron energy measurement

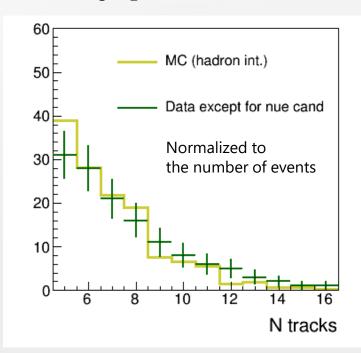
Number of segments (sum 7 films around shower maximum) are used to estimate electron energy. $\sim 25\% \frac{\Delta E}{E}$ resolution

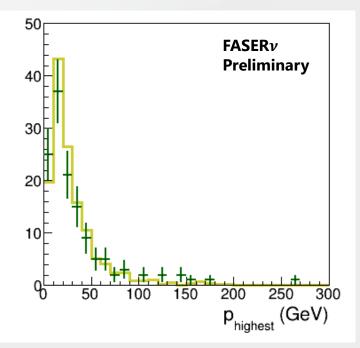
Momentum measurement performance is validated in the data using split tracks, confirming the MC results.

New results from FASERν: background study using the data

Detected vertices before the high-energy selection are dominated by neutral hadron interactions.

Expectation from simulation



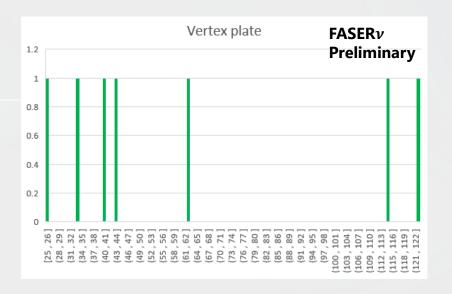

Data

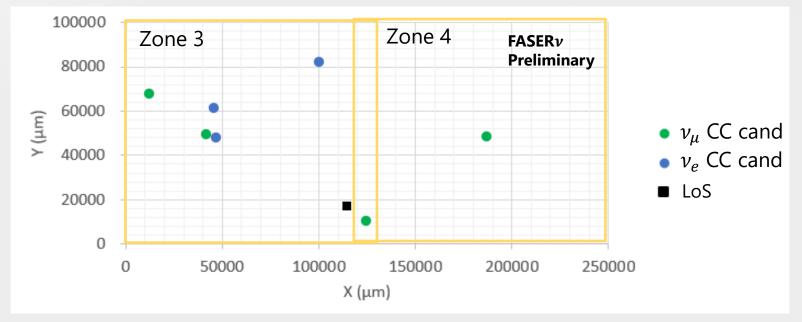
216 vertices

133 vertices (140 vertices -7ν CC candidates)

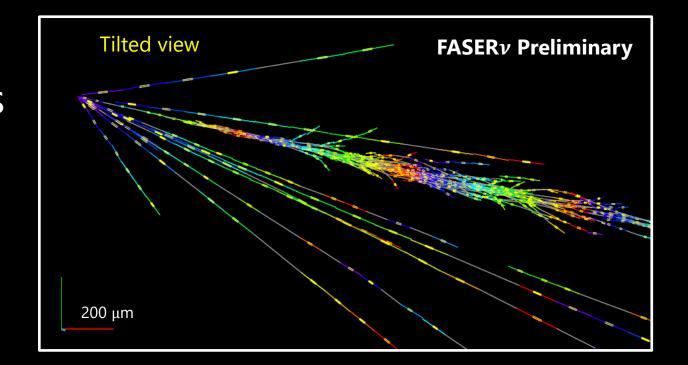
• K_S , K_L , n, nbar, Λ , Λbar interactions

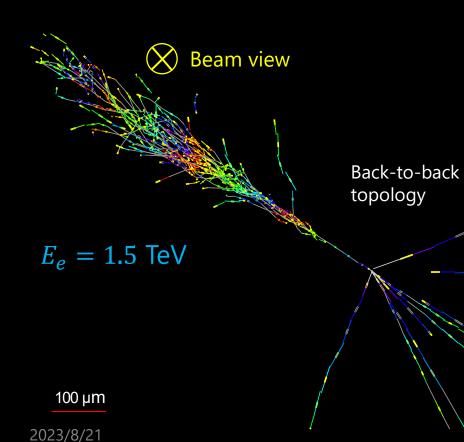
- The event rate agrees with the expectation within 50% uncertainty.
- No significant difference in the shape of the distributions.
 - → validating the background simulation at low energy
- For the background estimate after the selection, we used MC samples of individual neutral hadrons (equivalent to 20x the data).
 - v_{μ} BG: 6 MC events seen with p>200 GeV
 - v_e BG: no MC events seen with E_e > 200 GeV, and only 1 event with E_e > 50GeV

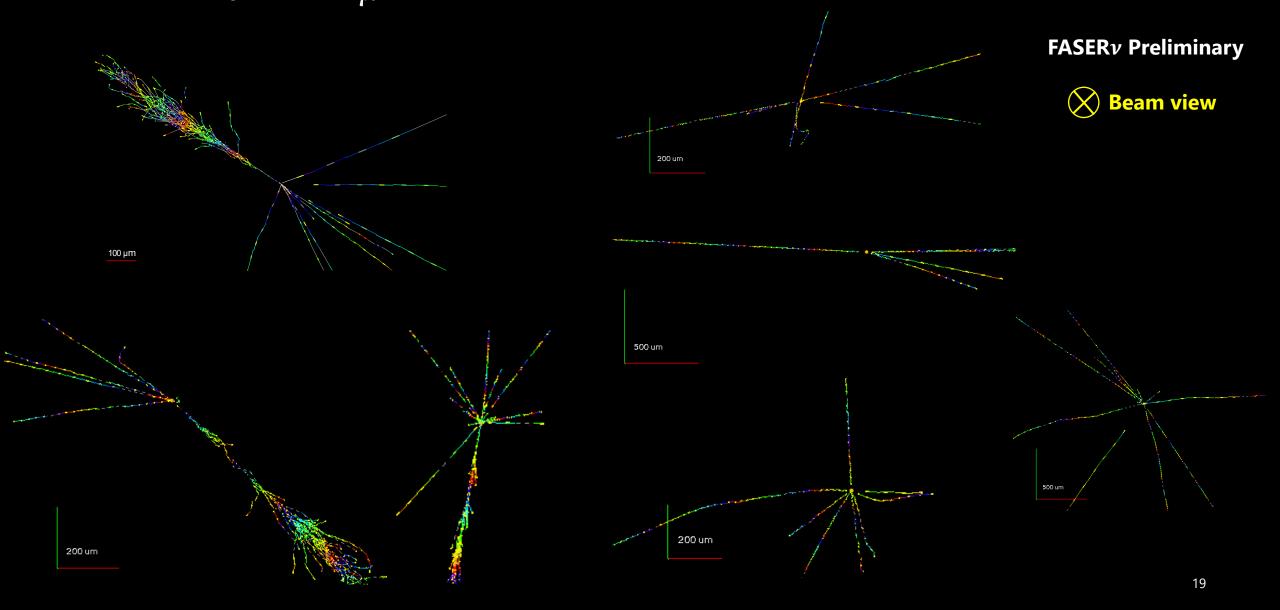

New results from FASERν: results of the selection

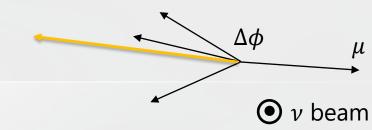

After applying the high-energy selection

FASER_v Preliminary

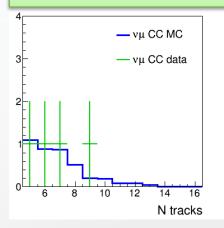

	Data
$ u_e$ CC	3
$ u_{\mu}$ CC	4

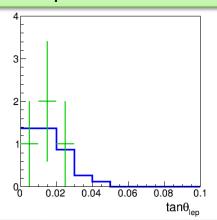

Vertex positions of the CC interaction candidates

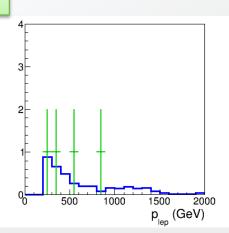

New results from FASER ν : one of the ν_e CC candidates

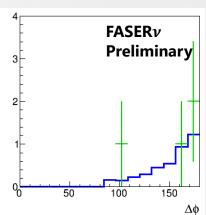


- 11 tracks at the vertex, 615 μm inside tungsten
- *e*-like track from vertex
- Single track for $2X_0$
- Shower max at $7.8 X_0$
- 175° between *e*-like track and others
- $\theta_e = 11$ mrad w.r.t. beam

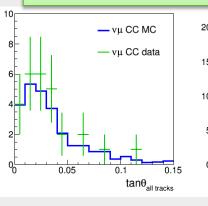

All the ν_e and ν_μ CC candidate events

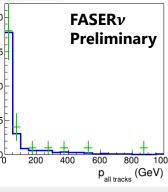


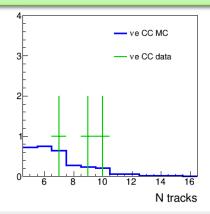

New results from FASERν: data/MC comparisons

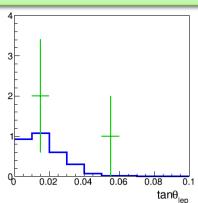


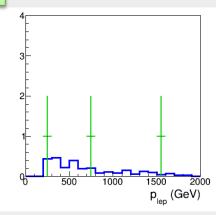
Vertex information of the ν_{μ} CC candidates

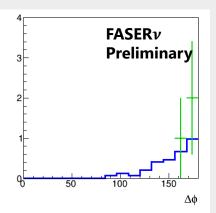







Tracks from the vertices





Vertex information of the v_e **CC candidates**

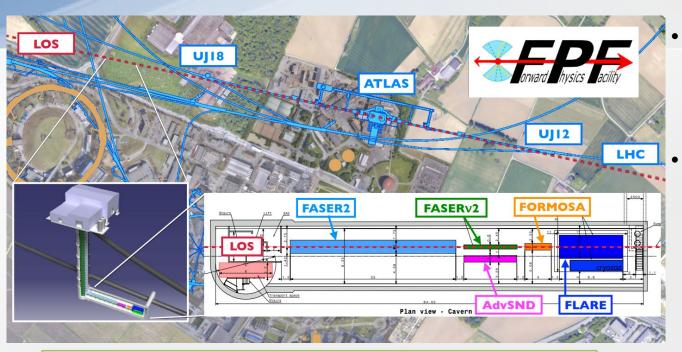
New results from FASERν: statistical significance

FASER_v Preliminary

	Expected background			Observed	
Hadron int. ν NC int.		Expected signal			
ν _e cc	0.002±0.002	-	1.2 +4.0 -0.6	3	
ν_{μ} CC	0.32 <u>+</u> 0.16	0.19 <u>+</u> 0.15	4.4 ^{+4.2} _{-1.4}	4	

$$p = 1.6 \times 10^{-7} \ (5.1\sigma)$$

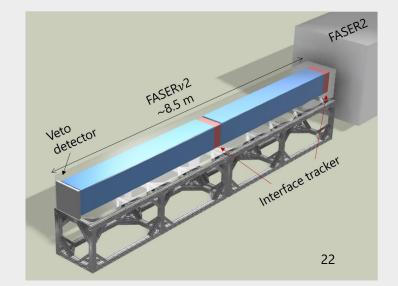
$$p = 5.2 \times 10^{-3} \ (2.5\sigma)$$


3 ν_e CC candidate events are observed.

 \rightarrow Probability to be explained by background is 1.6 \times 10⁻⁷, corresponding to 5 σ exclusion of the background-only hypothesis.

First direct observation of electron-neutrino CC interactions at the LHC

The performance of ν_{μ} detection will be improved in future analysis using a longer range for μ ID.


The Forward Physics Facility (FPF) and FASERv2

- FPF papers
- "The Forward Physics Facility: Sites, Experiments, and Physics Potential" (short paper), <u>Phys. Rept. 968 (2022) 1-50</u>, arxiv:2109.10905
- "The Forward Physics Facility at the High-Luminosity LHC" (long "White" paper), <u>J. Phys. G 50 (2023) 3, 030501</u>, arxiv:2203.05090

See also **Jianming Bian's talk** in WG3 on Aug 25, on the Forward Liquid Argon Experiment at the FPF

- FPF for the HL-LHC is a proposed facility that could house a suite of experiments to enhance the LHC's physics potential for BSM physics searches, neutrino physics and QCD.
- FASERv2 is designed to carry out precision tauneutrino measurements and heavy flavor physics studies
 - Expected to be ~20 tons
 - Should detect $\sim 10^6~\nu_\mu + \overline{\nu_\mu}$, $\sim 10^5~\nu_e + \overline{\nu_e}$, and $\sim 10^4~\nu_\tau + \overline{\nu_\tau}$ CC interactions

Summary

- FASER is successfully taking data in LHC Run 3.
- First observation of muon-neutrino CC interactions at the LHC by the FASER electronic detectors was reported and published.
- New results on LHC neutrinos from the FASER ν detector, distinguishing ν_e CC and ν_μ CC interaction candidates, are presented.
 - First observation of electron-neutrino CC interactions at the LHC at the highest energy ever observed
 - This result confirms emulsion detector can deliver physics measurements in the challenging environment of the LHC.
 - Public note in preparation
- The result presented here used 6% of the target mass and 1/7 of the luminosity collected so far. We already have more than 100x more neutrinos in our collected data and expect to collect 3x more data during LHC run 3.
- More measurements to come.
 - ~70 tau neutrinos at highest energies ever observed, maybe first detection of anti-tau neutrino, cross section and flux measurements in an unprobed energy window, new measurements that will sharpen IceCube measurements, clarify cosmic ray muon puzzle, ...

Acknowledgements

FASER is supported by:

- We also thank:
 - LHC for the excellent performance
 - ATLAS Collaboration for providing luminosity information
 - ATLAS SCT Collaboration for spare tracker modules
 - ATLAS for the use of their ATHENA software framework
 - LHCb Collaboration for spare ECAL modules
 - CERN FLUKA team for the background simulation
 - CERN PBC and technical infrastructure groups for the excellent support

Backup

Expected neutrino event rates

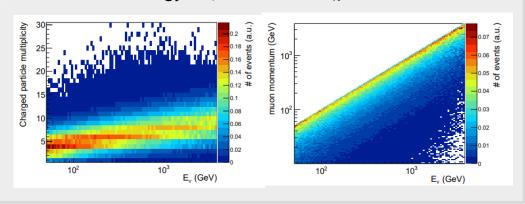
Based on

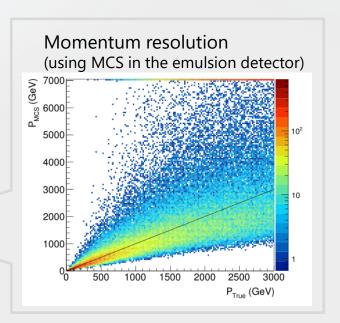
F. Kling and L. J. Nevay, "Forward Neutrino Fluxes at the LHC", Phys. Rev. D 104, 113008

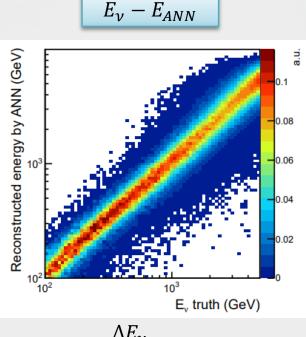
Expected number of CC interactions (250 fb⁻¹)

Generators		$\mathrm{FASER} u$			SND@LHC		
light hadrons	heavy hadrons	$ u_e + \bar{ u}_e $	$ u_{\mu} + \bar{ u}_{\mu}$	$ u_{\tau} + \bar{\nu}_{\tau} $	$ u_e + \bar{\nu}_e $	$ u_{\mu} + \bar{\nu}_{\mu} $	$ u_{ au} + \bar{ u}_{ au} $
SIBYLL	SIBYLL	1501	7971	24.5	223	1316	12.6
DPMJET	DPMJET	5761	11813	161	658	1723	31
EPOSLHC	Pythia8 (Hard)	2521	9841	57	445	1871	19.2
QGSJET	Pythia8 (Soft)	1616	8918	26.8	308	1691	12
Combination (all)		2850^{+2910}_{-1348}	9636^{+2176}_{-1663}	67.5_{-43}^{+94}	408^{+248}_{-185}	1651^{+220}_{-333}	$18.8^{+12}_{-6.6}$
Combination (w/o DPMJET)		1880^{+641}_{-378}	8910^{+930}_{-938}	$36^{+20.8}_{-11.5}$	325^{+118}_{-101}	1626^{+243}_{-308}	$14.6^{+4.5}_{-2.5}$

FASERv energy reconstruction


• Neutrino energy will be reconstructed by combining topological and kinematical variables


An ANN algorithm was built with topological variables

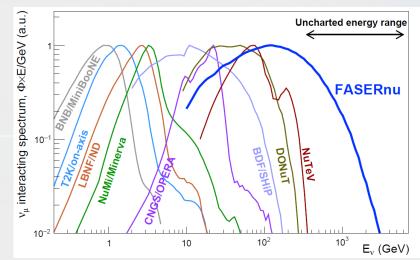

- # of charged tracks $\rightarrow E_h$
- # of γ showers $\rightarrow E_h$
- inverse of lepton angle $\rightarrow E_l$
- sum of inverse of hadron track angles $\rightarrow E_h$
- inverse of median of all track angles $\rightarrow E_h$, E_l

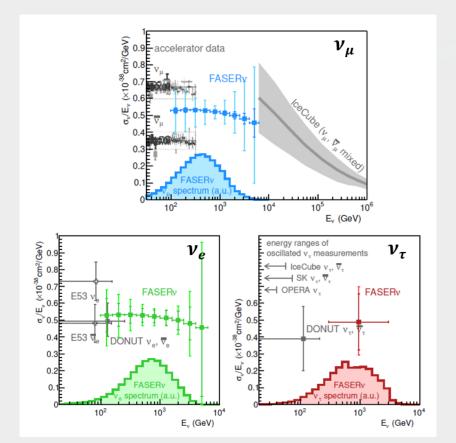
kinematical info (smeared)

- lepton momentum $\rightarrow E_1$
- sum of charged hadron momenta $\rightarrow E_h$
- sum of energy of γ showers $\rightarrow E_h$

$$\frac{\Delta E_{\nu}}{E_{\nu}} \sim 30\%$$

FASER_v physics potential (1): high-energy neutrino interactions

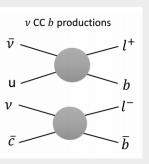

- Cross section measurements of different flavors at TeV energies
 - where no such measurements currently exist.

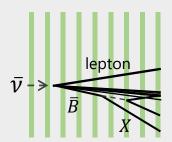

Expected number of charged-current interactions in FASER ν during LHC Run-3 ~3000 ν_e , ~10000 ν_μ , ~70 ν_τ interactions

FASER Collaboration, Eur. Phys. J. C 80 (2020) 61, arXiv:1908.02310

- Measurement of differential distributions
 - can be used to probe PDFs.
- Neutral-current measurements
 - could constrain neutrino non-standard interactions (NSI).

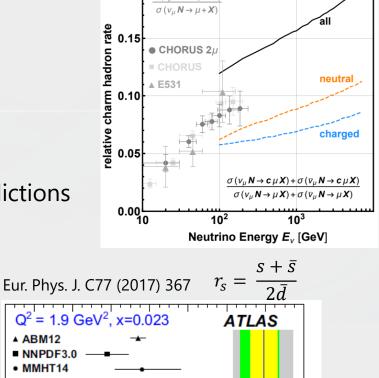
A. Ismail, R.M. Abraham, F. Kling, <u>Phys. Rev. D 103, 056014 (2021)</u>, arXiv:2012.10500




FASERv physics potential (2): heavy-flavor-associated channels

- Neutrino CC interaction with charm production $(vs \rightarrow lc)$
 - Study the strange quark content → Probe inconsistency between the predictions and the LHC data

- Neutrino CC interaction with beauty production
 - Has never been detected.

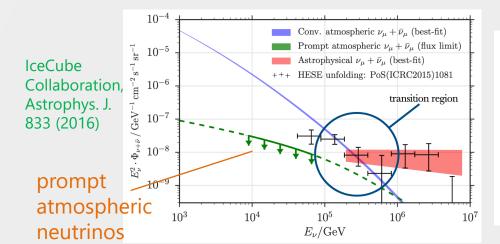


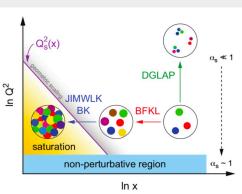
 MMHT14 ▼ CT14

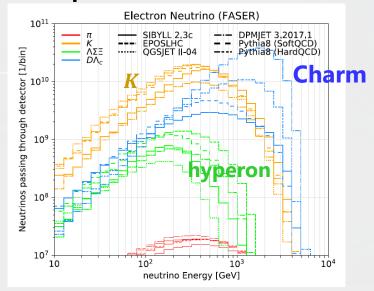
□ ATLAS-epWZ12

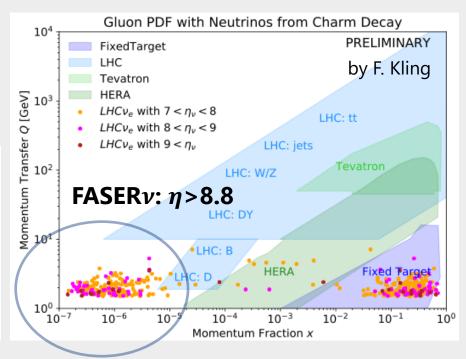
ATLAS-epWZ16

exp+mod+par uncertainty exp+mod+par+thy uncertainty


1.2


 $\sigma(v_{\prime\prime} N \rightarrow c \mu + X)$


- Tests of lepton universality in the heavy-flavor-associated channels
 - ~100 ν_e CC charm, ~600 ν_μ CC charm, ~2 ν_τ CC charm, and ~0.1 ν_μ CC beauty production expected in FASER $\nu \rightarrow 100$ more statistics in FASER $\nu 2$


FASER physics potential (3): forward hadron production

- Neutrinos produced in the forward direction at the LHC originate from decays of hadrons, mainly pions, kaons, and charm particles.
- Forward hadron production is poorly constrained by other LHC experiments. FASER can study it by measuring the neutrino event rate.
- FASER ν 's measurements provide novel input to QCD and astroparticle physics
 - Neutrinos from charm decay could allow to test transition to small-x, see effects of gluon saturation, constrain low-x gluon PDF, probe intrinsic charm.
 - Forward charm production is relevant for neutrino telescopes (such as IceCube) for understanding the **prompt atmospheric neutrino** production.
 - Forward hadron production is relevant for muon problem in CR physics (cosmic ray muon puzzle): CR experiments reported an excess in the number of muons over expectations computed using extrapolations of hadronic interaction models tuned to LHC data.

