Neutrinoless $\beta\beta$ Decay

Matteo Agostini University College London NuFACT23, Seoul National University Aug 22, 2023

Science and Technology Facilities Council

What is neutrinoless $\beta\beta$ Decay?

Nuclear decay: (A,Z) -> (A,Z+2) + 2e

- 2 neutrons -> 2 protons
- 2 electrons are emitted

Possible to detect only if single- β decay is strongly suppressed

Nuclear decay: $(A,Z) \rightarrow (A,Z+2) + 2e$

- 2 neutrons -> 2 protons ($\Delta B = 0$)
- 2 electrons are emitted ($\Delta L = 2$)

Nuclear decay: $(A,Z) \rightarrow (A,Z+2) + 2e$

- 2 neutrons -> 2 protons ($\Delta B = 0$)
- 2 electrons are emitted ($\Delta L = 2$)

Matter-creation in the laboratory! Direct violation of L and B-L

Nuclear decay: $(A,Z) \rightarrow (A,Z+2) + 2e$

- 2 neutrons -> 2 protons ($\Delta B = 0$)
- 2 electrons are emitted ($\Delta L = 2$)

Matter-creation in the laboratory! Direct violation of L and B-L

Nuclear decay: $(A,Z) \rightarrow (A,Z+2) + 2e$

- 2 neutrons -> 2 protons ($\Delta B = 0$)
- 2 electrons are emitted ($\Delta L = 2$)

Direct violation of **L** and **B-L**

Prove that **neutrinos and antineutrinos** are the **same object**

(even if sometimes **g** is used to incorporate biases in NME calculations)

wavefunction overlap between

- initial and final states
- lepton-nucleus interaction

Matteo Agostini (UCL)

MA, Benato, Detwiler, Menéndez, Vissani, Rev. Mod. Phys. 95, 025002 (2023)

Deppisch, Graf, Iachello and Kotila Phys.Rev.D 102 (2020) 9, 095016

Cirigliano et al., JHEP 12, 097 (2018)

$$P \propto \frac{1}{T_{1/2}} \propto G g^4 M^2 \left(\frac{\nu}{\Lambda}\right)^n$$
Higgs vacuum expectation
energy scale of BSM
Dim 5: Weinberg Operator

$$\frac{1}{2} \propto \left(\frac{v}{\lambda}\right)^2$$
with $\frac{\nu}{\Lambda} \propto \frac{m_{\beta\beta}}{m_e}$

$$\frac{1}{T_{1/2}} \propto \left(\frac{v}{\Lambda}\right)^6$$

$$\frac{1}{T_{1/2}} \propto \left(\frac{v}{\Lambda}\right)^{10}$$

A generic search for ultrahigh-energy BSM physics

Example: left-right symmetry

 $0\nu\beta\beta$ and collider searches are complementary $0\nu\beta\beta$ -decay experiments are open searches for new physics, and a discovery could come at any time

 Λ_{5}^{XY}

 Λ_5^{XX}

Closing up on the inverted ordering

What about normal ordering?

MA, Benato and Detwiler, PRD 96, 053001 (2017)

The interplay with cosmology

Cosmology surveys (DESI/EUCLID) close to measure $\Sigma = \sum_i m_i$

Ettengruber, **MA**, Caldwell, Eller and Schulz PRD 106, 073004 (2022)

HEATH BATH

The experimental landscape

Detection concepts

Calorimetric approach: source = detector

- solid state: pixelated detector
- liquid: monolithic self-shielding volume

Experimental signature

- 2 electron final state
- electron summed energy = Q-value
- (daughter isotope)

Isotope	Daughter	$Q_{etaeta}{}^{\mathbf{a}}$	$f_{\mathrm{nat}}{}^{\mathbf{b}}$	$f_{\rm enr}{}^{\rm c}$
		$[\mathrm{keV}]$	[%]	[%]
^{48}Ca	$^{48}\mathrm{Ti}$	4267.98(32)	0.187(21)	16
$^{76}\mathrm{Ge}$	$^{76}\mathrm{Se}$	2039.061(7)	7.75(12)	92
82 Se	82 Kr	2997.9(3)	8.82(15)	96.3
$^{96}\mathrm{Zr}$	^{96}Mo	3356.097(86)	2.80(2)	86
$^{100}\mathrm{Mo}$	100 Ru	3034.40(17)	9.744(65)	99.5
^{116}Cd	116 Sn	2813.50(13)	7.512(54)	82
$^{130}\mathrm{Te}$	130 Xe	2527.518(13)	34.08(62)	92
136 Xe	136 Ba	2457.83(37)	8.857(72)	90
150 Nd	150 Sm	3371.38(20)	5.638(28)	91

Recent and future experiments

MA, Benato, Detwiler, Menéndez, Vissani,

Rev. Mod. Phys. 95, 025002 (2023)

18

The most sensitive technologies

MA, Benato, Detwiler, Menéndez, Vissani, Rev. Mod. Phys. 95, 025002 (2023) (Image courtesy of Laura Manenti)

Ge semiconductor detectors

n+ electrode "

p+electrode

high-purity ⁷⁶Ge detectors

- ionization and charge drift
- < 0.1% energy resolution
- event topology

liquid Ar detector

• shield and scintillation light

Staged approach:

- GERDA/MAJORANA Demonstrator (40 kg)
- LEGEND-200 in data taking (200 kg)
- **LEGEND-1000** conceptual design in preparation (1 t)

Cryogenic calorimeters

- temperature variation and scintillation light
- particle identification and good resolution
- array of isotopically enriched crystals operated at ~10 mK

Nature 604 (2022) 7904, 53-58

Matteo Agostini (UCL)

300K

Experiment

Crystal

 m_{tot}

fenr

[%]

 $34^{\mathbf{a}}$

96

97

98

>95

96

21

Xe time projection chambers

- ¹³⁶Xe VUV scintillation light and ionization electron drift -> 3D reconstruction
- background decreasing with distance from surface, ²¹⁴Bi and ²²²Rn remain problematic
- R&D to tag $0\nu\beta\beta$ decay daughter isotope

Experiment	m_{tot}	$f_{ m enr.}$	Phase	Readout
	[kg]	[%]		
EXO-200	161	81	liquid	LAPPDs + wires
nEXO	5109	90	liquid	electrode tiles $+$ SiPM s
NEXT-100	97	90	gas	SiPMs + PMTs
NEXT-HD	1100	90	gas	SiPMs + PMTs
PandaX-III-200	200	90	gas	Micromegas
PandaX-III-1K	1000	90	gas	Micromegas
LZ-nat	7000	9	dual-phase	\mathbf{PMTs}
LZ-enr	7000	90	dual-phase	\mathbf{PMTs}
DARWIN	39300	9	dual-phase	\mathbf{PMTs}

Matteo Agostini (UCL)

ANODE

Large liquid scintillators

- scintillator loaded with target isotope
- scintillation photons detected by PMTs
- photon number and arrival time gives event energy and position
- self-shielding and fiducialization

Matteo Agostini (UCL)

KamLAND-Zen-800 @Kamioka

- 750 kg of enriched Xe in nylon balloon
- backgrounds: $2\nu\beta\beta$, cosmogenic, solar neutrinos, ²¹⁴Bi on balloon
- in data taking

$$T_{1/2}^{0\nu} > 2.3 \times 10^{26} \text{ yr at } 90\% \text{ C.L.}$$

Beyond a simple rate measurement

How to gain insight on the decay channel?

- measure the electron momenta \rightarrow angular distribution
- compare decay rate in different isotopes
- combined analysis of neutrino physics, including cosmology

Image courtesy of Laura Manenti

collaboration

Scenario 1: signal just beyond current limits

- experiments will discover it within a few years
- next-gen experiments will measures rate
- follow-up measurements of decay features

Scenario 2: weakest signal for inverted ordered neutrinos

- need to wait next-gen experiments for a discovery
- need R&D to measure decay features

Scenario 3: signal even weaker or absent

- need R&D for a convincing discovery
- interplay with oscillation experiments and cosmology can still lead to theory breakthroughs

Conclusions

- The discovery of $0\nu\beta\beta$ decay would be the first observation of **matter creation** (without antimatter), essential to explain the matter-antimatter asymmetry
- The discovery of $0\nu\beta\beta$ decay would prove that neutrinos are **Majorana particles** and **B-L** (i.e., the last global symmetry of the SM) is violated
- A worldwide, **multi-isotope** experimental program is exploring an exciting parameter space, where a **discovery** could come at any time

CUPID, LEGEND, nEXO will explore $m_{\beta\beta}$ values till the bottom of the inverted ordering and beyond, with a good chance to discover matter-creation

DESI and EUCLID promise to measure Σ . This will define a target for $0\nu\beta\beta$ experiments, with a no observation potentially hinting at Dirac masses or non-standard cosmology

KATRIN's parameter space is already excluded by both $0\nu\beta\beta$ decay and cosmology.

A signal would force to drastically rethink our phenomenology theory framework

Neutrino masses

- new right-handed neutrinos
- standard Higgs mechanism
- "unnaturally" small neutrino masses

- alternative Higgs mass mechanism
- neutrino mass violates L (and thus B-L)
- "naturally" small mass (see-saw mechanism)