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Some puzzles for physics beyond the Standard Model

Neutrino masses
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What does the seesaw tell us about HNL masses?

The Seesaw Lagrangian Active neutrino masses

l, — 0 mp 173
LD 5 (I/L I/R> (mg 0 ) (VR) my, = mp
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From High to Low-scale Leptogenesis

The Sakharov Conditions

1. Baryon number violation
sphaleron processes @
2. C and CP violation

RHN decays and oscillations

3. Deviation from equilibrium
freeze-in and freeze-out of RHN TIME

[ Fukugita/Yanagida '86 ]

[Davidson/Ibarra '02]
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The low-scale leptogenesis mechanisms

- assymetry produced in HNL decays - all asymmetry is generated
during RHN equilibration
2 (freeze-in)

e

- HNL scatterings dominate over

decays
" SIS G MEEES WE 4 = i - important to distinguish the
- relativistic effects can typically be helicities of the RHN
neglected

! . - the comoving HNL equilibrium
- heavy neutrino decays require L .
M > T, not clear what happens for d|str|but|on Is approximately
V< 130 GeV constant Y ~ 0

- both can be described by the same density-matrix equations

419



Results: The minimal model with 2 RHNs

baryogenesis possible for all masses

104 . 10-1 above 100 MeV!

6 — BAU limits ) ) )

o two main contributions to the BAU,

10°*

107 from freeze-in and freeze-out
L Loy - there is significant overlap of the
5 10° 0

- o two regimes

" )

1 results depend on low-energy CP

1012 10°°

108F NH phases:

Lo 100 Tor 00 ITH AM,\./I]\;\” - optimal phases for NH: § = 0 and

My, GeV n=mn/2

less overlap foreg. § = wandn =0

[JK/Timiryasov/Shaposhnikov 2103.16545]
maximal AM/M < 1071 1073

in resonant leptogenesis freeze-out (HNL decays) dominates,

we can start with thermal initial conditions

leptogenesis via oscillations is freeze-in dominated,

we neglect HNLs falling out of equilibrium

well understood analytically (c.f. [prewes/Garbrecht/Gueter/JK 1606.06690] and
[Hernandez/L6pez-Pavon /Rius/Sandner 2207.01651])

5/9



Results: The minimal model with 2 RHNs

baryogenesis possible for all masses
10¢ ‘ ; ‘ : 10" above 100 MeV!

6 — BAU limits ) ) )

106 @ ficzsi two main contributions to the BAU,

10°*

107 from freeze-in and freeze-out
L Loy - there is significant overlap of the
5 10° 0

- o two regimes

" 3

1 results depend on low-energy CP

1012 10°°

108F NH phases:

Lo 100 Tor 00 ITH AM,\./I]\;\” - optimal phases for NH: § = 0 and

My, GeV n=mn/2

less overlap foreg. § = wandn =0

[JK/Timiryasov/Shaposhnikov 2103.16545]
maximal AM/M < 1071 1073

in resonant leptogenesis freeze-out (HNL decays) dominates,

we can start with thermal initial conditions

leptogenesis via oscillations is freeze-in dominated,

we neglect HNLs falling out of equilibrium

well understood analytically (c.f. [prewes/Garbrecht/Gueter/JK 1606.06690] and
[Hernandez/L6pez-Pavon /Rius/Sandner 2207.01651])

5/9



Results: The minimal model with 2 RHNs

baryogenesis possible for all masses
104 ‘ ; : : 10" above 100 MeV!
6 — BAU limits ) ) )
ol - two main contributions to the BAU,

10° | — freeze-out 10-2

107 from freeze-in and freeze-out
L Loy - there is significant overlap of the
5 10° 0

- o two regimes

" 3

1 results depend on low-energy CP

1012 10°°

101 phases:

10 100 Tor 00 106 - optimal phases for NH: § = 0 and

0
AMy/M,
My, GeV IR n=m/2
[JK/Timiryasov/Shaposhnikov 2103.16545] - lessoverlap foreg. § = wandn = 0
maximal AM/M < 1071 1073

in resonant leptogenesis freeze-out (HNL decays) dominates,

we can start with thermal initial conditions

leptogenesis via oscillations is freeze-in dominated,

we neglect HNLs falling out of equilibrium

well understood analytically (c.f. [prewes/Garbrecht/Gueter/JK 1606.06690] and
[Hernandez/L6pez-Pavon /Rius/Sandner 2207.01651])

5/9



Results: The minimal model with 2 RHNs

baryogenesis possible for all masses
e above 100 MeV!

104 T
103 BAU limits . . .
- freeze-in - two main contributions to the BAU,
106 - freeze-out 107
17 FCC-ee, [U]* from freeze-in and freeze-out
« SHiP, \U,,\’
Lo - HLLHC, [U,* w - there is significant overlap of the
5 10° 2
Lo o two regimes
" )
10 results depend on low-energy CP
1012 10°°
100 phases:
05 00 ToL 102 10-* - optimal phases for NH: § = 0 and

0
AMy/M,
My, GeV IR n=m/2
[JK/Timiryasov/Shaposhnikov 2103.16545] - lessoverlap foreg. § = wandn = 0
maximal AM/M < 1071 1073

in resonant leptogenesis freeze-out (HNL decays) dominates,

we can start with thermal initial conditions

leptogenesis via oscillations is freeze-in dominated,

we neglect HNLs falling out of equilibrium

well understood analytically (c.f. [prewes/Garbrecht/Gueter/JK 1606.06690] and
[Hernandez/L6pez-Pavon /Rius/Sandner 2207.01651])

5/9



Results: The minimal model with 2 RHNs

baryogenesis possible for all masses

10* . - 10! above 100 MeV!
10 — BAU limits . . .
“ freeze-in two main contributions to the BAU,
- freeze-out 10?2 )
FCC-ee, [U? from freeze-in and freeze-out
—- SHiP, |U,)?

w - there is significant overlap of the
two regimes

+ HL-LHC, |U,|*

o

1074
101t )’ )

N results depend on low-energy CP
10° 10°°

100 phases:

10 100 Tor 00 ITH AI\[A'/II\;\” - optimal phases for NH: § = 0 and
My, GeV n=m/2
[IK/Timiryasov/Shaposhnikov 210316545 - lessoverlapforeg 6 = mandn =0

maximal AM/M < 1071 1073

in resonant leptogenesis freeze-out (HNL decays) dominates,

we can start with thermal initial conditions

leptogenesis via oscillations is freeze-in dominated,

we neglect HNLs falling out of equilibrium

well understood analytically (c.f. [prewes/Garbrecht/Gueter/JK 1606.06690] and
[Hernandez/L6pez-Pavon /Rius/Sandner 2207.01651])

5/9



Results: The minimal model with 2 RHNs

baryogenesis possible for all masses
10 ‘ : : : above 100 MeV!
S — BAU limits . . .
o g o, two main contributions to the BAU,
10 — freeze-out ]
107 from freeze-in and freeze-out
1072
e there is significant overlap of the
%107 1079 .
S e two regimes
101 10 .
, results depend on low-energy CP
10 - M
107
100 EH ] phases:
1000 160 T 07 103 AM/IllT optimal phases for NH: § = 0 and
M, GeV n=m/2

less overlap foreg. § = wandn =0

[JK/Timiryasov/Shaposhnikov 2103:16545]
maximal AM/M < 1071 1073

in resonant leptogenesis freeze-out (HNL decays) dominates,

we can start with thermal initial conditions

leptogenesis via oscillations is freeze-in dominated,

we neglect HNLs falling out of equilibrium

well understood analytically (c.f. [prewes/Garbrecht/Gueter/JK 1606.06690] and
[Hernandez/L6pez-Pavon /Rius/Sandner 2207.01651])

5/9



Results: Leptogenesis with 3 RHNs

leptogenesis consistent
with all U2 for
experimentally
accessible masses

both freeze-in and
freeze-out leptogeneses
within reach of existing
experiments

- the maximal value of U?
depends on m;
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[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]
[leptogenesis bounds from JK/Timiryasov/Shaposhnikov 210316545

and Drewes/Georis/JK 210616226 | 6/9
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[figure from 1910.04688]

HNL contribution to 0v34

mgg = |[1 — fa(M)]mgg
_ N2
+2f124(M)F$”(951 -2

- HNLs can contribute to mgg

when M ~ 100 MeV

- the HNL contribution

suppressed when AM < M

approximate lepton number conservation

- leptogenesis imposes bounds

on the size of AM and 62

- parts of the leptogenesis

parameter space can already be
excluded in existing experiments

- much large parameter space

with 3 HNLs

* Miightest 7 0
- larger rates due to wider range of AM; ;

- large HNL contribution implies M < 1
GeV
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Probing HNLs in neutrinoless doub
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Probing HNLs in neutrinoless doubl
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Indirect probes: Charged LFV with 3 HNLs

101 my; =0

10
107 |

10 R \
107 | g .

x

(RV)ail

*
pi

10 F

107

[2i(RV)

10°%

10° i — VIA ey AL eAl
TIA peee Ti—eTi

10" 5 3
0 10! 10° 10! 10? 10* 10*

M (GeV)

[Granelli/JK/Petcov 2206.04342]

parameters space in the TeV region already severly constrained by cLFV
observables

- future p — e conversion experiments can probe a large part of the leptogenesis
parameter space with 3 HNLs

- simultaneous LFV possible in several channels 8/9
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Conclusions

- right-handed neutrinos can offer a minimal solution to
the origins of neutrino masses and the baryon asymmetry
of the Universe

- the existence right-handed neutrinos can be tested at
existing and near-future experiments
- excellent synergy between direct and indirect probes!

- leptogenesis is a viable baryogenesis mechanism for all
heavy neutrino masses above the O(100) MeV scale

- HNLs could lead to very rich phenomenology
displaced vertices, LFV (u — ey), LNV (0v33), HNL oscillations...
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Thank you!



Direct searches for HNLs



Direct probes of the HNL parameter space
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Direct probes of the HNL parameter space
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Direct probes of the HNL parameter space
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Direct probes of the HNL parameter space

Displaced Vertices

N
Primary
Vertox (FV)

% Vertex V)

[graphic by D. Trischuk]

LLP experiments

HS decay to SM particles

(Absorber/sweeper]
Protons.

Decayvonume | |Bpectromei

] w

[graphic by A. Golutvin]

-2 ! B
\ |
10-4 H
\L
10-6 \_\
10751 5
10-9
10712 =
ol and il il il
10T 107 107 107 10% 107

M [GeV]

[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]



Direct probes of the HNL parameter space
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Lepton Number violation in HNL decays

- for AMy <« T'y lepton number
is conserved - Dirac HNLs

- for AMy 2 'y lepton number
is violated - Majorana HNLs

10°3

- fine tuning practically implies
lower limit on the mass splitting
AMN 2 Am,,

- large range of AMy are
consistent with leptogenesis

106

UZ

10°°

10712

- energy resolution of planned
1 10 100 1000 experiments -
M [GeV] AM/M ~ O(few%)

1018

[Drewes/Klose/JK 190713034] - tiny mass splittings can be
probed via HNL oscillations



Lepton Number violation in HNL decays
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Lepton Number violation in HNL decays
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Lepton Number violation in HNL decays

- for AMy <« T'y lepton number
is conserved - Dirac HNLs

- for AMy 2 'y lepton number
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Measuring flavor ratios at experiments

- the HNL branching ratios are 10, M = 30 GeV
constrained for a fixed U2

- large number of HNLs
possible at FCC-ee allow for
measurement of U2 /U?

- similar sensitivity @ SHiP

- strong constraints on flavour
for large AM L

- even more predictive when
Combmed Wlth discrete [Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/JK

flavour and CP symmetries
(in the case with 3 RHN)

1710.03744]
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- the HNL branching ratios are
constrained for a fixed U2

- large number of HNLs
possible at FCC-ee allow for
measurement of U2 /U?

- similar sensitivity @ SHIP

- strong constraints on flavour
for large AM

- even more predictive when
combined with discrete

flavour and CP symmetries
(in the case with 3 RHN)

Measuring flavor ratios at experiments
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[Snowmass HNL WP 2203.08039]



- the HNL branching ratios are
constrained for a fixed U?

- large number of HNLs
possible at FCC-ee allow for
measurement of U2 /U?

- similar sensitivity @ SHiP
- strong constraints on flavour
for large AM

- even more predictive when
combined with discrete
flavour and CP symmetries
(in the case with 3 RHN)

Measuring flavor ratios at experiments
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Measuring flavor ratios at experiments

- the HNL branching ratios are
constrained for a fixed U?

- large number of HNLs
possible at FCC-ee allow for
measurement of U2 /U?

- similar sensitivity @ SHiP

- strong constraints on flavour
for large AM

- even more predictive when
combined with discrete
flavour and CP symmetries
(in the case with 3 RHN)

[Drewes/Georis/HagedornKlaric 2203.08538]

[Drewes/Georis/HagedornKlaric 230a.bcde]



How is 3 # 27: Leptogenesis

- asymmetry can be generated even without washout

[Akhmedov/Rubakov/Smirnov hep-ph/9803255]

- large hierarchy in the washout is possible

[Canetti/ Drewes/Garbrecht 1404.7144]

- level crossing between the heavy neutrinos

[Abada/Arcadi/Domcke/Drewes/JK/Lucente 1810.12463]



How is 3 # 27: Leptogenesis

- asymmetry can be generated even without washout

[Akhmedov/Rubakov/Smirnov hep-ph/9803255]
- Sakharov II: CP
* more C P phases than in the case with two RHN
- large hierarchy in the washout is possible
[Canetti/ Drewes/Garbrecht 1404.7144]
- Sakharov Ill: non-equilibrium
- level crossing between the heavy neutrinos
[Abada/Arcadi/Domcke/Drewes/JK/Lucente 1810.12463]

- Sakharov Il: CP



Hierarchy in the washout

. leptgn asymmetry cgn 5 RHNs:
survive washout if hidden
in a particular flavor

m10NO
m20NO
m30NO

- washout suppression

_L. U2 =
f: ? ~ m 3010

- for2RHN f > 5 x 1073
- for 3 RHN § « 1 possible

[Snowmass White Paper 2203.08039]

’ SlOW eq ul I'I b ration [Drewes/Garbrecht/Gueter/JK 1609.09069]

[Caputo/Hernandez/Lopez-Pavon/Salvado 1704.08721]
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Hierarchy in the washout

- lepton asymmetry can
survive washout if hidden
in a particular flavor

- washout suppression

N, U2
r U2

f

- for2RHN f > 5 x 1073
- for 3 RHN f <1 pOSSible [ Drewes/Georis/JK 230x.xxxx]

[Chrzaszcz/Drewes/Gonzalo/Harz/Krishna-

- slow equilibration
murthy/Weniger 1908.02302]
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Hierarchy in the washout

- lepton asymmetry can
survive washout if hidden
in a particular flavor

- washout suppression

N, U2
r U2

—h
Il

- for2RHN f > 5 x 1073
- for 3 RHN § « 1 possible
- slow equilibration

Iy Ur
r U2

3 RHNs:

m;=0.03 eV

[ Drewes/Georis/JK 230x.xxxx]
[Chrzaszcz/Drewes/Gonzalo/Harz/Krishna-

murthy/Weniger 1908.02302]



Enhancement due to level crossing

- Inthe B — L symmetric limit two heavy neutrinos form a
pseudo-Dirac pair

- the “3rd” heavy neutrino can be heavier than the
pseudo-Dirac pair

- for T > Tgw, the pseudo-Dirac pair also has a thermal
mass

T>Tew T <Tew
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Enhancement due to level crossing
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