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Some puzzles for physics beyond the Standard Model

Neutrino masses
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What does the seesaw tell us about HNL masses?

The Seesaw Lagrangian

L ⊃ 1
2

(
νL νc

R

) (
0 mD

mT
D 0

) (
νc

L

νR

) Active neutrino masses

mν = mD

10−1 101 103 105 107 109 1011 1013 1015

MM [GeV ]

[ Minkowski ’77
Gell-Mann/Ramond/Slansky ’79
Mohapatra/Senjanović ’80

Yanagida ’79
Schechter/Valle ’80 ]

canonical type-I seesaw

mD ∼ mtmD ∼ mτmD ∼ mµmD ∼ me

[ Mohapatra ’93
Mohapatra/Valle ’86

Bernabeu/Santamaria/Vi-
dal/Mendez/Valle ’86
Gavela/Hambye/Her-
nandez/Hernandez ’09

Branco/Grimus/Lavoura ’89
Malinsky/Romao/Lavoura ’89 ]

low-scale
linear and inverse seesaws
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From High to Low-scale Leptogenesis

The Sakharov Conditions

1. Baryon number violation
sphaleron processes

2. C and CP violation
RHN decays and oscillations

3. Deviation from equilibrium
freeze-in and freeze-out of RHN

[ Fukugita/Yanagida ’86 ]
thermal leptogenesis

[Davidson/Ibarra ’02]

[ Liu/Segre ’93
Pilaftsis ’97

Pilaftsis/Underwood ’04;’05]
resonant leptogenesis

[ Akhmedov/Rubakov/Smirnov ’98
Asaka/Shaposhnikov ’05]

leptogenesis via oscillations

10−1 101 103 105 107 109 1011 1013 1015

MM [GeV ] 3/9
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The low-scale leptogenesis mechanisms

Resonant leptogenesis
• assymetry produced in HNL decays

∣∣∣∣ + +

∣∣∣∣2

• asymmetry diverges when M2 → M1

• relativistic effects can typically be
neglected

• heavy neutrino decays require
M & T , not clear what happens for
M . 130 GeV

Leptogenesis via oscillations
• all asymmetry is generated
during RHN equilibration
(freeze-in)

• HNL scatterings dominate over
decays

• important to distinguish the
helicities of the RHN

• the comoving HNL equilibrium
distribution is approximately
constant ˙Y eq

N ≈ 0

• both can be described by the same density-matrix equations
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Results: The minimal model with 2 RHNs

10-1 100 101 102 103

MN,  GeV
10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

|U
|2

NH

BAU limits

10−6

10−5

10−4

10−3

10−2

10−1

∆MN/MN

[JK/Timiryasov/Shaposhnikov 2103.16545]

• baryogenesis possible for all masses
above 100 MeV!

• two main contributions to the BAU,
from freeze-in and freeze-out

• there is significant overlap of the
two regimes

• results depend on low-energy CP

phases:
• optimal phases for NH: δ = 0 and

η = π/2
• less overlap for e.g. δ = π and η = 0
• maximal ∆M/M . 10−1 →10−3

• in resonant leptogenesis freeze-out (HNL decays) dominates,
we can start with thermal initial conditions

• leptogenesis via oscillations is freeze-in dominated,
we neglect HNLs falling out of equilibrium

• well understood analytically (c.f. [Drewes/Garbrecht/Gueter/JK 1606.06690] and
[Hernández/López-Pavón/Rius/Sandner 2207.01651])
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Results: Leptogenesis with 3 RHNs

• leptogenesis consistent
with all U2 for
experimentally
accessible masses

• both freeze-in and
freeze-out leptogeneses
within reach of existing
experiments

• the maximal value of U2

depends on m1

[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]

[leptogenesis bounds from JK/Timiryasov/Shaposhnikov 2103.16545

and Drewes/Georis/JK 2106.16226 ] 6/9
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Probing HNLs in neutrinoless double β decay

[figure from 1910.04688]

HNL contribution to 0νββ

mββ '
∣∣[1 − fA(M̄)]mν

ββ

+2f
2
A(M̄)

M̄2

Λ2
∆M(Θ2

e1 − Θ2
e2)

∣∣∣

• HNLs can contribute to mββ

when M ∼ 100 MeV

• the HNL contribution
suppressed when ∆M � M

approximate lepton number conservation

• leptogenesis imposes bounds
on the size of ∆M and Θ2

ei

• parts of the leptogenesis
parameter space can already be
excluded in existing experiments

• much large parameter space
with 3 HNLs

• mlightest 6= 0
• larger rates due to wider range of ∆Mij

• large HNL contribution implies M . 1
GeV
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[Eijima/Drewes 1606.06221,
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Probing HNLs in neutrinoless double β decay

[Abada/Arcadi/Domcke/Drewes/JK/Lucente 1810.12463]
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Indirect probes: Charged LFV with 3 HNLs

10-1 100 101 102 103 104

M (GeV)
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) e
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m1 = 0
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TIA

µ→eγ
µ→eee

µAl− eAl

µTi− eTi

[Granelli/JK/Petcov 2206.04342]

• parameters space in the TeV region already severly constrained by cLFV
observables

• future µ → e conversion experiments can probe a large part of the leptogenesis
parameter space with 3 HNLs

• simultaneous LFV possible in several channels
8/9
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Conclusions

• right-handed neutrinos can offer a minimal solution to
the origins of neutrino masses and the baryon asymmetry
of the Universe

• the existence right-handed neutrinos can be tested at
existing and near-future experiments

• excellent synergy between direct and indirect probes!

• leptogenesis is a viable baryogenesis mechanism for all
heavy neutrino masses above the O(100) MeV scale

• HNLs could lead to very rich phenomenology
displaced vertices, LFV (µ → eγ), LNV (0νββ), HNL oscillations…
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Thank you!
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Direct searches for HNLs



Direct probes of the HNL parameter space

HNL mixing
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∑
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U2
ai

U2 & mν/M

[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]
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Direct probes of the HNL parameter space

Displaced Vertices

[graphic by D. Trischuk]

LLP experiments

[graphic by A. Golutvin] [figure adapted from Snowmass WPs 2203.08039 and 2203.05502]
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Lepton Number violation in HNL decays

[Drewes/Klose/JK 1907.13034]

• for ∆MN � ΓN lepton number
is conserved - Dirac HNLs

• for ∆MN & ΓN lepton number
is violated - Majorana HNLs

• fine tuning practically implies
lower limit on the mass splitting
∆MN & ∆mν

• large range of ∆MN are
consistent with leptogenesis

• energy resolution of planned
experiments -
∆M/M ∼ O(few%)

• tiny mass splittings can be
probed via HNL oscillations



Lepton Number violation in HNL decays

Normal Ordering:
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is conserved - Dirac HNLs
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is violated - Majorana HNLs
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lower limit on the mass splitting
∆MN & ∆mν

• large range of ∆MN are
consistent with leptogenesis

• energy resolution of planned
experiments -
∆M/M ∼ O(few%)

• tiny mass splittings can be
probed via HNL oscillations
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Measuring flavor ratios at experiments

• the HNL branching ratios are
constrained for a fixed U2

• large number of HNLs
possible at FCC-ee allow for
measurement of U2

e /U2

• similar sensitivity @ SHiP
• strong constraints on flavour
for large ∆M

• even more predictive when
combined with discrete
flavour and CP symmetries
(in the case with 3 RHN)
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How is 3 6= 2?: Leptogenesis

• asymmetry can be generated even without washout
[Akhmedov/Rubakov/Smirnov hep-ph/9803255]

• Sakharov II: CP
• more CP phases than in the case with two RHN

• large hierarchy in the washout is possible
[Canetti/Drewes/Garbrecht 1404.7144]

• Sakharov III: non-equilibrium

• level crossing between the heavy neutrinos
[Abada/Arcadi/Domcke/Drewes/JK/Lucente 1810.12463]

• Sakharov II: CP
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Hierarchy in the washout

• lepton asymmetry can
survive washout if hidden
in a particular flavor

• washout suppression

f ≡ Γa

Γ ∼ U2
a

U2

• for 2 RHN f > 5 × 10−3

• for 3 RHN f � 1 possible
• slow equilibration

ΓI

Γ ∼ U2
I

U2

2 RHNs:

[Snowmass White Paper 2203.08039]

[Drewes/Garbrecht/Gueter/JK 1609.09069]

[Caputo/Hernandez/Lopez-Pavon/Salvado 1704.08721]
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Enhancement due to level crossing

• in the B − L symmetric limit two heavy neutrinos form a
pseudo-Dirac pair

• the “3rd” heavy neutrino can be heavier than the
pseudo-Dirac pair

• for T � TEW , the pseudo-Dirac pair also has a thermal
mass
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Enhancement due to level crossing

Heavy Neutrino Densities
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