Muon CLFV Experiments Satoshi MIHARA, KEK/J-PARC/SOKENDAI

Most of contents are from CLFV 2023 presentations and WG4 parallel session

NuFact 2023, Seoul National University, 2023/8/23

Outline **Muon CLFV experiments**

- Introduction
- Muon facilities
- Muon CLFV experiments
 - MEG II, Mu3e, COMET, Mu2e, DeeMe, MACE
- Summary

	MEG, ME	CONFY CONFY	MUZO	MUJe	g-2@FNA,	9-20 - 212	JYL Tel
2013							
2014							
2015							
2016							
2017					•	Ø)
2018					S		
2019				5			
2020		~	S				
2021	~	0					
2022							
2023							
2024							
2025							

NuFact 2016 SM

Introduction Muon CLFV experiments

- cLFV rate in the Standard Model with non-zero neutrino mass is too small to be observed in experiments; O(BR) < 10⁻⁵⁴
 - No SM Physics Background
 - Observation = clear evidence of NP
- Motivated by many kinds of new physics models BSM
- Origin of neutrino mass

Introduction Muon CLFV experiments

- cLFV rate in the Standard Model with non-zero neutrino mass is too small to be observed in experiments; O(BR) < 10⁻⁵⁴
 - No SM Physics Background
 - Observation = clear evidence of NP
- Motivated by many kinds of new physics models BSM
- Origin of neutrino mass

Introduction **Muon CLFV experiments**

- cLFV rate in the Standard Model with non-zero neutrino mass is too small to be observed in experiments; O(BR) < 10⁻⁵⁴
 - No SM Physics Background
 - Observation = clear evidence of NP
- Motivated by many kinds of new physics models BSM
- Origin of neutrino mass

 $Mu - \overline{Mu}$ transition

DOI: 10.1103/PhysRevD.105.015026, T. Fukuyama, Y. Miura, Y. Uesaka

Muon facility in the world

• RAL (UK)

• TRIUMF (Canada)

Muon CLFV experiments

- $\mu \rightarrow e \gamma$ MEG II at PSI
- μ -e conversion COMET at J-PARC & Mu2e at FNAL
- $\mu \rightarrow eee Mu3e at PSI$

MEG II at PSI $\mu \rightarrow e \gamma$ search

Alessandro Baldini, WG4 on 22/Aug

MEG: $\mu \rightarrow e\gamma$ search at PSI

- Surface DC Muon beam
- surrounding it

MEG Results

- Full dataset : $7.5 \times 10^{14} \mu^+$ stopped on the target
- Blind analysis in $(E_{\gamma}, t_{e\gamma})$ plane
- Five observables $E_{\gamma}, E_{e}, t_{e\gamma}, \theta_{e\gamma}, \phi_{e\gamma}$
- Maximum likelihood analysis
- All PDFs well consistent with data
- The fit result was consistent with no signal

• $Br(\mu^+ \rightarrow e^+\gamma) < 4.2 \times 10^{-13} @ 90\% C.L.$

(c)

56

MEG II: Upgrade of MEG

- MEG achieved $4.2 \times 10^{-13} @ 90\% C.L.$
 - Background was dominated by Accidental event overlaps
- MEG II aims at twice better resolutions than MEG in all components
- Pouble the muon beam rate
 - 7x10⁷ muon stops/s
- New detector to tag the radiative muon decay event
- New calibration method

Target Sensitivity : 6x10⁻¹⁴ in 3 years running

MEG II Status Detectors

- Physics DAQ started in 2021
- Significant statistics collected in 2022 and even more in 2023.
- All newly installed detectors are working fine!
 - TDAQ as well!

Single Volume Low mass Stereo-wire DC

LXe detector with MPPC on the front face

Radiative Decay Counter

Pixelated timing counter

MEG II Status Detectors

- Physics DAQ started in 2021
- Significant statistics collected in 2022 and even more in 2023.
- All newly installed detectors are working fine!
 - TDAQ as well!

Single Volume Low mass Stereo-wire DC

LXe detector with MPPC on the front face

Radiative Decay Counter

Pixelated timing counter

MEG II Status Detectors

- Physics DAQ started in 2021
- Significant statistics collected in 2022 and even more in 2023.
- All newly installed detectors are working fine!
 - TDAQ as well!

Digitiser

e Low mass C

LXe detector the front face

Radiative D

Trigger

Readout

g counter

MEG II Detector Performance

Variables	MEG	MEG II Design	MEG II Currently Achieved	
ΔEe[keV]	380	130	90	L L
$\Delta \theta_{e}, \Delta \phi_{e}$ [mrad]	9, 9	7.0, 5.5	8, 7	sitro
Efficiency _e [%]	40	70	65	D D O
ΔE_{r} [%][deep/shallow]	1.7 / 2.4	1.0 / 1.1	1.7 / 2.0	US NS
$\Delta Position_r[mm]$	5	2.4	2.5	loto
Efficiency _r [%]	60	70	60	
Δt _e γ[psec]	120	85	80) Somk
				\cup

MEG II Prospects

 $0.25^{\times 10^{15}}$ $N^{\rm stop}_{\mu^+}$ Last run: 538782 (2023-08-14 03:54:08) Accumulated 0.2 2021 T_{live}: 2.90e+06 s 2022 T_{live}: 7.76e+06 s 2023 T_{live}: 3.65e+06 s 0.15 2023 0.1 $4x10^7 \mu/sec$ 0.05 02/Jul

Mon Aug 14 07:00:22 2023

02/May

COMET & Mu2e $\cdot \mu$ -e conversion search

L-e conversion

• Atomic capture of μ^{-}

Decay in orbit (DIO)

- · electron gets recoil energy
- Capture by nucleus

µ⁻+(A,Z)→v_µ+(A,Z-1)

resultant nucleus is different

$$\mu^{N} < \tau \mu^{free} (\tau \mu^{AI} = 860 \text{ nsec})$$

 $\cdot \mu$ -e conversion

|µ⁻+(A,Z)→e⁻+(A,Z)|

• E_{μe}(AI) ~ m_μ-B_μ-E_{rec}=104.97MeV $-B_{\mu}$: binding energy of the 1s muonic atom

80 **ETOT (MeV)**

Chen Wu, WG4 on 25/Aug MyeongJae Lee, WG4 on 22/Aug

J-PARC Facility (KEK/JAEA)

Neutrino beam to Kamioka

-

Material and Life Science Facility

5.5

all the provide

Part C

Nuclear and Particle Physics Exp. Hall

Rapid Cycle Synchrotron

Energy : 3 GeV Repetition : 25 Hz Design Power : 1 MW

Main Ring

Max Energy : 30 GeV Design Power for FX : 0.75 MW Expected Power for SX : > 0.1 MW

Neutrino beam to Kamioka

COMET

Material and Life Science Facility

5.5

all the provide

Part C

Nuclear and Particle Physics Exp. Hall

Rapid Cycle Synchrotron

Energy : 3 GeV Repetition : 25 Hz Design Power : 1 MW

Main Ring

Max Energy : 30 GeV Design Power for FX : 0.75 MW Expected Power for SX : > 0.1 MW

- Precisely pulsed proton beam from J-PARC MR
- Graphite (Phase-I) or Metal (Phase-II) target for pion production
- MELK Proposal (V. M. Lobashev)
 - Pion/Muon collection using a strong and gradient magnetic field, Pion Capture Solenoid (PCS)
 - Pion/Muon transport with a curved solenoid
- Stack of thin target disks to stop muons

ELEMENTARY PARTICLES AND FIELDS Experiment Search for Lepton-Flavor-Violating Rare Muon Processes R. M. Djilkibaev* and V. M. Lobashev** Institute for Nuclear Research, Russian Academy of Sciences, pr. Shestidesyatiletiya Oktyabrya 7a, Moscow, 117312 Russia Received March 26, 2010; in final form, July 12, 2010

COMET Staging Approach Target Sensitivity <10⁻¹⁴ with 3.2kW beam

- Proton beam line construction completed in JFY2021
- Graphite as a pion production target
- Pion Capture Solenoid construction is in the 3rd year of multi-year construction contract (FY2020-2024)
- Physics Detector
 - CDC and trigger hodoscope in a solenoid
 - Muon stopping target (AI) at the center of the solenoid
 - Beam engineering run in JFY2022 and physics in JFY2025-

Target Sensitivity <10⁻¹⁶ with 56kW beam

- Extension of muon transport solenoid to cope with higher proton beam power
- More efficient beam background suppression
- Much less pion contamination in longer transport
- Tungsten alloy as a pion production target
- Electron spectrometer solenoid to suppress the detector counting rate
- Physics detector
 - Straw-tube tracker and LYSO calorimeter
 - Muon stopping target (AI + others) in a gradient magnetic field for the purpose of signal electron collection with a magnetic mirroring

Phase-a

- Commissioning of
 - the COMET proton beam line and
 - the COMET muon beam transport.

- Beam time in
 - 10th 14th February (commissioning)
 - 3rd 4th & 9th 15th March

Phase- a Setup

Beamline without the Pion Capture Solenoid & Field

- + A thin Pion Production Target contained in the beam vacuum chamber.
- + Muon Transport Solenoid to be used in Phase-I & II, too.
- Beam-masking system with two moving collimator slits in front of the Transport Solenoid

Phase- a Setup

Beamline without the Pion Capture Solenoid & Field

- A thin Pion Production Target contained in the beam vacuum chamber.
- Muon Transport Solenoid to be used in Phase-I & II, too.
- + Beam-masking system with two moving collimator slits in front of the Transport Solenoid

Detectors

Detectors

- Position measurement by the Muon Beam Monitor and Straw Tube Tracker
- Direction by the Straw Tube Tracker.
- Decay time measured by the Range Counter.
- * For momentum reconstruction and muon identification
- * Also generates trigger signals

DAQ

 Based on the MIDAS DAQ framework, officially adopted by COMET.

Muon Decay Curve Fitting

1.6 x 10^12 ppb

RCS

empty bucket

4 batch injection

h=2 I bunch

COMET Physics Detector

- COMET Phase-I Physics detector
 - CDC
 - CTH
 - Muon beam monitor
 - Muon stopping target
 - X-ray detector
 - CRV

COMET CDC

- Cylindrical Drift Chamber (CDC)
 - Main Detector of Phase-I Physics
 - 20 layers structure
 - -5,000 sense wires (Au coated W)
 - -15,000 field wires (AI)
 - All stereo layers He base gas
 - (He : iC4H10 = 90 : 10)
- Readout by RECBE & FCT, Track trigger by COTTRI
- Construction completed in 2016, followed by CR test in KEK
- Moved to J-PARC in Sep. 2022. Conditioning in progress in J-PARC

CTH – Cylindrical Trigger Hodoscope

- Two layers of plastic scintillators with MPPC readout through optical fibers
 - 5-8 m fibers to avoid radiation damage on **MPPCs**
 - MPPC cooling to suppress noise
- Components' delivery in progress
 - Start assembly at J-PARC in JFY2023
- Beam test in Australia to finalize the design

Cosmic Ray Veto (CRV) detector

- Scintillator strips covering the major parts of the walls
- RPC in the front area where neutron background is significant
- 1st module on the way to J-PARC, arriving in autumn

- Top scintillator strip panel
- Left scintillator strip panel

RPC

COMET time line

- Detector solenoid magnet delivery in autumn 2024 followed by detector installation
 - Physics detector to be ready at the end of 2024
- conditioning.
 - To be ready at the end of 2025
- Target and shield installation in early 2026. •
- Physics in spring 2026!

Capture solenoid magnet delivery in spring 2024 followed by installation and

Steven Boi, WG4 on 22/Aug

Mu2e at FNAL

Mu2e at FNAL

Proton Beam

Mu2e solenoids and detectors

- Production, Transport, and Detector solenoids
 - All coils fabricated. TS almost complete
- Calorimeter
 - First disk completed, second disk underway
- Tracker
 - 26 / 36 planes are built
- CRV

Mu2e time line

- Detector and beam commissioning through to 2026
 - Take Run 1 data until LBNF/PIP-II shutdown
 - x1000 improvement over SINDRUM-II
- Resume data collection in 2029 after long shutdown
 - x10000 improvement over SINDRUM-II

Mu3e at PSI $\mu \rightarrow eee search$

Martin Müller, WG4 on 22/Aug

Mu3e: μ \rightarrow eee search at PSI

- $\mu^+ \rightarrow e^+ e^+ e^-$
 - Common vertex
 - Time coincident
 - $\Sigma E = m_{\mu}$
 - $\Sigma \mathbf{p} = 0$
- Backgrounds
 - Internal conversion
 - Accidental overlap

Mu3e beam line and detectors

- PiE5 beam line shared with MEG II
- Detector solenoid installed in PiE5
- High-voltage Monolithic Active Pixel Sensors (HV-MAPS), MuPix
- Timing detectors, fiber ribbons & tiles
- Sophisticated DAQ

 Mu3e Magnet

 Detector cage

Vertex detect@f

PiE5 muon beam

Im

MuPix chip ladder

Timing detector Fiber ribbon detector around the center Tile detector in recurl stations

Mu3e time line

- Run at the $\,\pi\,{\rm E5}$ CMBL
- Reach 2 x 10⁻¹⁵ S.E.S in 400 days
- First detector installation in 2023
- Infrastructure installation in next 1.5 years
- Commissioning in 2024-2025
- First physics data taking in 2025-2026
- ··· and Phase II

37

-

-

Summary Muon CLFV experiments

- MEG II running, COMET started engineering run !
- Mu3e and Mu2e are starting in a few years
- Any single event, as long as confirmed, it's a clear evidence of new physics.
- Further interesting ideas!
 - $\mu^- + e^- \rightarrow e^- + e^-$
 - $MU \overline{MU}$ oscillation

Summary Muon CLFV experiments

- MEG II running, COMET started engineering run !
- Mu3e and Mu2e are starting in a few years
- Any single event, as long as confirmed, it's a clear evidence of new physics.
- Further interesting ideas!
 - $\mu^- + e^- \rightarrow e^- + e^-$
 - $MU \overline{MU}$ oscillation

	MEG, MED	CONFT "CG //	Muze	MUJe	2@FMA,	20,02,02	
2013					Ò(\$ 	
2014							
2015							
2016							
2017							
2018							
2019							
2020							
2021							
2022							
2023							
2024							
2025							
2026							
2027							
2028							
2029							
2030							

NuFact 2023 SM

