Summary of CEvNS Experiments
R.Tayloe, Indiana U
Outline: R.Tayloe, Indiana U • Summary of CEvNS Experiments
• R. Tayloe, Indiana U
• Outline:
• motivation/overview
• Reactors
• Solar/atmospheric v
• stopped pion v

Outline:

- motivation/overview
- -
	-

Status and future

Thanks to all for contributions to this talk, especially those from "Magnificent CEvNS"

workshop series

NUFACT 2023

The 24th International Workshop on Neutrinos from Accelerators August 21 ~ 26, 2023 at Seoul National University, Seoul, Korea

CEvNS: Coherent Elastic v-Nucleus Scattering: vA→vA

CEVNS: Coherent Elastic v-Nucleus Scattering: $vA \rightarrow vA$
CEVNS probes the nucleus coherently, yielding clear tests of the standard model weak interaction
with the nucleus.
...CEVNS is largest v channel at ~10 MeV
 $\sigma \approx \frac{G_F$ with the nucleus. CEVNS: Coherent Elastic v-Nucleus Scattering: vA

CEVNS probes the nucleus coherently, yielding clear tests of the st

with the nucleus.

...CEVNS is largest v channel at ~10 MeV

on nuclei, eg Cs, I, Ar

F¹⁰ F $\frac{G_F^2$ stic v-Nucleus Scattering: $vA \rightarrow vA$

scherently, yielding clear tests of the standard model weak in

CEVNS total, differential cross section

Par at ~10 MeV
 $\sigma \approx \frac{G_F^2}{4\pi} (N - (1 - 4 \sin^2 \theta_W) Z)^2 E_v^2$
 $\frac{d\sigma}{dT} = \frac{G_F^2}{4$

$$
\sigma \approx \frac{G_F^2}{4\pi} (N - (1 - 4\sin^2 \theta_W) Z)^2 E_v^2
$$

$$
\frac{d\sigma}{dT} = \frac{G_F^2}{4\pi} Q_W^2 M_A \left(1 - \frac{M_A T}{2E_\nu^2}\right) F(q^2)^2
$$

- v flavor independent

Also:
• coupling to other neutral particles possible

Coherent Elastic v-Nucleus Scattering: $\begin{bmatrix} \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} \end{bmatrix}$ **Coherent Elastic v-Nucleus Scattering:**
Physics reach of CEvNS (and related)
• Supernovae (SN)
• Largest σ in SN dynamics
• possible SN detection channel
• Nuclear Physics: nuclear form factors **Dherent Elastic v-Nucleus Scattering:**

Supernovae (SN)

Current Supernovae (SN)

Current of the SN dynamics

Current of the SN dynamics

Current Physics: nuclear form factors

Current Physics: nuclear form factors

Curre **Solution Contains Contained Standard Model tests:** Coherent Elastic v-Nucleus Scattering:

Physics reach of CEvNS (and related)

• Supernovae (SN)

• Largest σ in SN dynamics

• possible SN detection channel

• Nuclear Physics: nuclear form factors

• Standard Model te **bherent Elastic v-Nucleus Scattering:**

sysics reach of CEvNS (and related)

Supernovae (SN)

• Largest σ in SN dynamics

• possible SN detection channel

Nuclear Physics: nuclear form factors

Standard Model tests:
 Coherent Elastic v-Nucleus Scattering:

Physics reach of CEvNS (and related)

• Supernovae (SN)

• Largest σ in SN dynamics

• possible SN detection channel

• Nuclear Physics: nuclear form factors

• Standard Model test

- -
	-
-
- -
	-
	- v magnetic moment
- v oscillations: Sensitive to sterile v
- -
	-

R. Tayloe, NuFact2023

U

Coherent Elastic v-Nucleus Scattering:

• much interest/activity from theoretical Coherent Elastic v-Nucleus Scattering:

Physics reach of CEvNS (and related)

• Supernovae (SN)

• Largest σ in SN dynamics

• possible SN detection channel

• Substitute Caddature Caddature Caddature Caddature Caddature C **Coherent Elastic v-Nucleus Scattering:**
Physics reach of CEvNS (and related)
• Supernovae (SN)
• Largest σ in SN dynamics
• possible SN detection channel
• Nuclear Physics: nuclear form factors **Oherent Elastic v-Nucleus Scattering:**

vysics reach of CEvNS (and related)

Supernovae (SN)

• Largest σ in SN dynamics

• possible SN detection channel

Nuclear Physics: nuclear form factors **Onerent Elastic v-Nucleus Scattering:**

vysics reach of CEvNS (and related)

Supernovae (SN)

• Largest o in SN dynamics

• possible SN detection channel

Nuclear Physics: nuclear form factors

Standard Model tests: Coherent Elastic v-Nucleus Scattering:

• Physics reach of CEvNS (and related)

• Supernovae (SN)

• Largest σ in SN dynamics

• possible SN detection channel

• Nuclear Physics: nuclear form factors

• Standard Model tes Coherent Elastic v-Nucleus Scattering:

Physics reach of CEvNS (and related)

• Supernovae (SN)

• Largest σ in SN dynamics

• possible SN detection channel

• Nuclear Physics: nuclear form factors

• Standard Model tests

- -
	-
-
- -
	-
	- v magnetic moment
-
- -
	-

• much interest/activity from theoretical
community eg: M. Cadeddu, etal,
33. Overview of physics results with coherent elastic neutrino-nucleus scattering data community eg: M. Cadeddu, etal,

08/23/23

R. Tayloe, NuFact2023

W

CEvNS: Experimental constraints

- CEVNS: Experimental constraints

 "coherent" : momentum transfer small compared to nuclear radius

 then max nuclear recoil energy (E_{nr}) <10-100 keV \Rightarrow E_v < \sim 50 MeV **CEVNS: Experimental constraints**

• "coherent" : momentum transfer small compared to nuclear recoil $\Rightarrow E_v \le 50$ MeV

• then max nuclear recoil energy (E_{nr}) <10-100 keV

• Detection of nuclear recoil (over backgrounds)

-
- is quite a challenge

And so, after ~50 years since prediction of this process, with great strides in v sources and detectors, we are now able to measure CEvNS

08/23/23 R. Tayloe, NuFact2023

CEvNS: Experimental strategies

- CEvNS: Experimental strategies
• coherence condition \Rightarrow need E_v <~ 50 MeV , so
• Reactor _V sources : E_v <~ 5 MeV , E_{nr} ~5 keVnr
	-

R. Tayloe, NuFact2023 6

ψ

CEvNS: Experimental strategies

-
- CEvNS: Experimental strategies
• coherence condition \Rightarrow need E_v <~ 50 MeV , so
• pi DAR v sources : E_v <~ 50 MeV , E_{nr} ~50 keVnr

R. Tayloe, NuFact2023 7

08/23/23

CEvNS: Experimental strategies

- -
	-
	-

Low E recoil \Rightarrow low background, sensitive detectors

08/23/23

R. Tayloe, NuFact2023 8

$\begin{array}{|l|l|l|}\hline \text{CEvNS} & \text{world summary} \\\hline \text{Experiment} & \text{Detetctor Type} & \text{Location} & \text{Source} \\\hline \text{COHERENT} & \text{CsI, Ar, Ge, Nal} & \text{USA} & \pi\text{DAR} \\\hline \text{CCM} & \text{AP} & \text{DAR} & \text{IDAR} \\\hline \text{ICM} & \text{TPD} & \text{DAR} & \text{DAR} \\\hline \end{array}$ EVNS world summary

Experiment Detector Type Location Source

COHERENT CsI, Ar, Ge, Nal USA π DAR Stepped-pion bases

JSNS² TBD Japan π DAR stepped-pion bases

Stepped-pion bases

Stepped-pion bases

Stepped-pion ba EVNS world summary

Experiment Detector Type Location Source Experiments

COHERENT CsI, Ar, Ge, NaI USA πDAR

JSNS² TBD Japan πDAR

ESS CsI, Si, Ge, Xe Sweden πDAR

ESS CsI, Si, Ge, Xe Sweden πDAR NS world summary

NS world summary

HERENT CsI, Ar, Ge, NaI USA

TED Japan TDAR

SINS² TED Japan TDAR

SINS² CsI, Si, Ge, Xe Sweden TDAR

TESS CsI, Si, Ge, Xe Sweden TDAR

TEMP Reactor

COM SIVE TRANGERS CSI, Since Sw THE THE CIN CONTROL SUCE CONTRACT NS world summary

eriment Detector Type Location Source

ERENT CsI, Ar, Ge, Nal USA π DAR

SINS² TBD Japan DAR

ESS CsI, Si, Ge, Xe Sweden π DAR

ELLKID Si/Ge Italy Reactor

ILLAX Ar TBD Reactor

ONINE SICOS Brazil R EVNS world summary

xperiment Detector Type Location Source

CERNIT CSI, Ar, Ge, Nal USA πDAR

CEN

JSNS² TBD Japan πDAR

ESS CsI, Si, Ge, Xe Sweden πDAR

CHILLKID SiVGe Italy Reactor

CHILLAIX Ar TBD Reactor

CONNIE SIC CHILLAX Ar TBD Reactor VNS world summary

phermion the botter of type Location Source

OHERENT CSI, Ar, Ge, Nal USA π DAR

COM Ar USA π DAR

ESS CSI, Si, Ge, Xe Sweeten π DAR

ESS CSI, Si, Ge, Xe Sweeten The Reactor

CONNIE SICCDs Brazil WS WOrld Summary

periment Detector Type Location Source

COM AGEN, AC, CNI USA TOAR

COM AGENET CISI, AC, AC, AND USA TOAR

COM USA TOAR

USA TOAR

SING

CONUS SING

COM AGENET SING TO USA TOAR

FINLLAX AT TED Reactor

CO DRESDEN II PCGe USA Reactor VNS world summary

verment Detector Type

COM Ar USA FORR

COM Ar USA FORR

SISS CRISING Xe Sweden FORR

SISS CRISING Xe Sweden FORR

BULLIKID SIGE Reactor

COMINE SICCOS Brazil Reactor

COMINE SICCOS Brazil Reactor

RESD VAS World Summary

HERENT ESTAT GRI USA TOAR

COM AT USA TOAR

COM AT USA TOAR

SES CRISINGS

COM AT USA TOAR

SES CRISINGS

COMING SIGGE SWEET REACTOR COMMUNICATED CONTROL SIGGERED DEVICE DESCRIPTION REACTOR

COMING SIGG THERENT CRISISTON CONTROL CON e Location Source

1981 USA TDAR

1984 TDAR

1999 TO DAR

1999 TO DAR

1999 TO DAR

1999 Reactor

1999 Reactor

GaNESS

From: arXiv:2209.06872, and others

+ future at Fermilab and the proportunities at a PIP-II Beam Dump Facility and Beyond and others…

08/23/23

CEvNS reactor experiments

CONUS

- CEvNS Reactor Experiments CONUS

CONUS

 5 years of operation at Brokdorf reactor with 4 x 1kg Ge

detectors at 17m from 3 9GW reactor detectors at 17m from 3.9GW reactor EvNS Reactor Experiments - CONUS

CONUS

• 5 years of operation at Brokdorf reactor with 4 x 1kg

• detectors at 17m from 3.9GW reactor

• Very low energy threshold (~200 eVee)

• Iow backgrounds in ROI

• Assume Lindhard EvNS Reactor Experiments - CONUS

CONUS

• 5 years of operation at Brokdorf reactor with 4 x 1l

• detectors at 17m from 3.9GW reactor

• Very low energy threshold (~200 eVee)

• Iow backgrounds in ROI

• Assume Lindhard q EvNS Reactor Experiments - CONUS

CONUS

• 5 years of operation at Brokdorf reactor with 4 x 1l

• detectors at 17m from 3.9GW reactor

• Very low energy threshold (~200 eVee)

• low backgrounds in ROI

• Assume Lindhard q EvNS Reactor Experiments - CONUS

CONUS

• 5 years of operation at Brokdorf reactor with 4 x 11

• detectors at 17m from 3.9GW reactor

• Very low energy threshold (~200 eVee)

• low backgrounds in ROI

• Assume Lindhard q
	-
	-
	-
	-
	-
	-

R. Tayloe, NuFact2023 11 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 |

More Reactor Experimental results

Dresden II :

-
-
- ore Reactor Experimental results

Dresden II :

 3kg P-contact Ge detectors 10m from Dresden 3GW core, 96 days

 "...preference for CEvNS signal is found"

 however debate on low-E behavior of quenching model and tensio ore Reactor Experimental results

Dresden II :
• 3kg P-contact Ge detectors 10m from Dresden 3GW core, 96 days
• "..preference for CEvNS signal is found"
• however debate on low-E behavior of quenching model and tension wi **France Constant Constan** CONUS result Free Reactor Experimental results

Freeden II :

• 3kg P-contact Ge detectors 10m from Dresden 3GW core, 96 days

• "..preference for CEvNS signal is found"

• however debate on low-E behavior of quenching model and tensi **Exactor Experimental results**

and II :

3kg P-contact Ge detectors 10m from Dresden 3GW core, 96 days

"...preference for CEvNS signal is found"

however debate on low-E behavior of quenching model and tension with

CON

DOI: 10.1103/PhysRevLett.129.211802

Aside:

R. Tayloe, NuFact2023 12

ψ

More Reactor Experimental results

- vGen:
- ore Reactor Experimental results

 vGen:

 1.4kg HPGe detectors 11m from KNPP reactor 3GW

 ore, 94 days,

 spectrum consistent with background

 spectrum consistent with background

–0.2 core, 94 days,
-

DOI: 10.1103/PhysRevD.106.L051101

- Many other reactor experiments being planned
and R&D'd.
• Eg: NEON and R&D'd.
- **SKr**
-

08/23/23

R. Tayloe, NuFact2023 14

 $CEvNS$ π DAR (accelerator) experiments

-
- $\begin{array}{l} \textsf{CEvNS}\ \pi\ \textsf{DAR}\ \textsf{experiments}\ \textsf{-COHERENT} \ \textsf{-At ORNL}\ \textsf{Spallation}\ \textsf{Neutron}\ \textsf{Source}\ (\textsf{SNS}) \ \textsf{-world's most powerful pulsed proton beam}\ (1.4\ \textsf{MW},\ 1\ \textsf{GeV}) \ \textsf{(and upgraded to 2 MW},\ 1.3\ \textsf{GeV}\ 2024) \ \textsf{-pulsed}\ (60\ \textsf{Hz},\ 600\ \textsf{ns}\ \textsf{spill}\ \textsf{time})... \ \textsf{F523}\ \textsf{prechro/user} \end{array}$ CEvNS π DAR experiments - COHERENT
• At ORNL Spallation Neutron Source (SNS)
• world's most powerful pulsed proton beam (1.4 MW, 1 GeV)
• pulsed (60 Hz, 600ns spill time)...
• ~7000 MWhr/year, 1.5E23 protons/year (and upgraded to 2 MW, 1.3 GeV 2024)
-
-

R. Tayloe, NuFact2023

COHERENT experiment at SNS/ORNL COHERENT experiment at SNS/ORNL
• in "neutrino alley"
• with low beam-related backgrounds
• 20-29 m from target

-
-
-

R. Tayloe, NuFact2023

COHERENT experimental strategy at SNS/ORNL

Phase 1:

COHERENT experimental strategy at SNS/ORNL
Phase 1:
Observe CEvNS process and measure N² dependence
with multiple targets/detector technologies
Phase 2: Observe CEvNS process and measure N^2 dependence
with multiple targets/detector technologies
Phase 2:
Precision measurements of CEvNS (and related) physics with multiple targets/detector technologies

Phase 2: with larger/upgraded targets/detectors

R. Tayloe, NuFact2023

COHERENT with CsI[Na]

CsI[Na] scintillating crystal:
• 14.6 kg sodium-doped CsI COHERENT with CsI[Na]

CsI[Na] scintillating crystal: 2017

• 14.6 kg sodium-doped CsI • 6

• high light yield (13.35 pe/keVee) • Manufactured by Amcrys-H
• Single R877-100 PMT COHERENT with CsI[Na]

CsI[Na] scintillating crystal: 2017

• 14.6 kg sodium-doped CsI • 6

• high light yield (13.35 pe/keVee) • 6

• Manufactured by Amcrys-H

• Single R877-100 PMT

-
-
-
-

2017 results (~1.5yrs of data)

-
-

5/16/22 R. Tayloe, NDM22

COHERENT with CsI[Na]

- COHERENT with CsI[Na]
• updated results with 2.2x more data
• compared to 2017 result)
• analysis improvements
• new quenching factor (nuclear response) measurements/a
• resulting in reduced errors COHERENT with CsI[Na]
• updated results with 2.2x more data
(compared to 2017 result)
• analysis improvements
• new quenching factor (nuclear response) measure
• resulting in reduced errors
-
-
-

COHERENT, updated CsI results:

event time (wrt beam pulse)
 $\begin{array}{ccc}\n & \text{Light yield/energy} \\
\hline\n & \text{6} & \text{10} \\
 & \text{200}\n\end{array}$ T, updated CsI results:

event time (wrt beam pulse)
 $\frac{1}{200}$
 $\frac{1}{200}$ 35 40 45 +Data Residual $\Box v_e$ CEvNS \overline{v}_u CEvNS ∇_{μ} CEvNS $\Box v_\mu$ CEvNS $BRN + NIN$ $BRN + NIN$ 10 $\frac{3}{t_{\text{rec}}(\mu s)}$ $\overline{2}$ $\overline{10}$ $\overline{20}$ $\overline{30}$ $\overline{40}$ $\overline{50}$ $\overline{0}$ $\overline{4}$ $\overline{5}$ $\overline{0}$ 60 6 PE COHERENT, PRL 129 081801 No-CEvNS rejection 11.6σ SM CEvNS prediction 341 ± 11 (th) ± 42 (ex) 306 ± 20 **Fit CEvNS events** Fit χ^2 /dof 82.4/98 **CEVNS** cross section $165_{-25}^{+30} \times 10^{-40}$ cm² $189 \pm 6 \times 10^{-40}$ cm² SM cross section

- COHERENT, updated CsI results, physics:
• Updated CsI data improves upon previous non-standard interaction
(NSI) constraints and eliminates a degeneracy in LMA solar oscillation
solution COHERENT, updated CsI results, physics<u>:</u>
• Updated CsI data improves upon previous non-standard interaction
(NSI) constraints and eliminates a degeneracy in LMA solar oscillation
• Separately measured v_{μ}/v_{e} cross s (NSI) constraints and eliminates a degeneracy in LMA solar oscillation solution **COHERENT, updated CsI results, physics:**

• Updated CsI data improves upon previous non-standard (NSI) constraints and eliminates a degeneracy in LMA solution

• Separately measured v_μ/v_e cross sections as allowed in

- $/v_{\rm e}$ cross sections as allowed in NSI scenarios. The constant \sim
-

fit $v_{\mu}/v_{\rm e}$ cross sections -0.5

The CENNS-10 (COHAr-10) Detector: The CENNS-10 (COHAr-10) Detector:
Specs:
• single phase LAr scintillation
• fiducial volume = 24kg
• 28m from target
• Energy threshold ≈ 20keVnr
• ≈140 CEvNS events/SNS-year (7GWhr) The CENNS-10 (COHAr-10) Detector:

specs:

• single phase LAr scintillation

• fiducial volume = 24kg

• 28m from target

• Energy threshold ≈ 20keVnr

• ≈140 CEvNS events/SNS-year (7GWhr)

• Production run in current con

Specs:

-
-
-
-
-
-

08/23/23 R. Tayloe, NuFact2023 23

CENNS-10 analysis:

-
-
- energy, time, particle-ID
-
-

10.1103/PhysRevLett.126.012002

quared set has since increased by \sim 3x, Measured σ (\times 10⁻³⁹ cm²)
updated results in near future

08/23/23 R. Tayloe, NuFact2023 24

CENNS-10 results:

- $\begin{array}{cc}\n\text{between with standard model} \\
\text{between with standard model} \\
\text{S} \\
\text$
-

community eg: doi:10.1103/PhysRevD.102.015030

08/23/23 R. Tayloe, NuFact2023 25

Important new addition to COHERENT : D_2O

- D_2 O flux normalization detector:

 reduce current 10% flux error to 2-3% from known y-d CC cross section **Example 10**
 Example 10
 Example 10
 Example 20
 Example 20
 Example 20
 Example 20
 Example 20
 Example 2
 Example 20
 Example 20
 Example 20
 Example 20
 Example 20
 Example 20
 Example 20 ortant new addition to COHERENT : D₂O

D flux normalization detector:

reduce current 10% flux error to 2-3% from known v-d CC cross section

allowing more precise measurements of CEvNS etc with other detectors

Light co mportant new addition to COHERENT : D₂O

D₂O flux normalization detector:

• reduce current 10% flux error to 2-3% from known v-d CC cross section

allowing more precise measurements of CEvNS etc with other detectors
 mportant new addition to COHERENT : D₂O

D₂O flux normalization detector:

• reduce current 10% flux error to 2-3% from known v-d CC cros

• allowing more precise measurements of CEvNS etc with other

• Light collecti
-
-
-
- JINST 16 (2021) 08, 08.

08/23/23 R. Tayloe, NuFact2023

New COHERENT detectors

Germanium:

- **New COHERENT detectors**

Germanium:

 P-Type Point Contact Ge detectors well-suited to

 6 2kg detectors ran with 1.7MW SNS beam this summer

 expected ~2.5keVnr threshold

 expected ~2.5keVnr threshold **W COHERENT detectors

F-Type Point Contact Ge detectors well-suited to

precision CEvNS measurements

6 - 2kg detectors ran with 1.7MW SNS beam this summer

expected ~2.5keVnr threshold

Initial results expected this fall** New COHERENT detectors

Germanium:

• P-Type Point Contact Ge detectors well-suited to

precision CEvNS measurements

• 6 - 2kg detectors ran with 1.7MW SNS beam this summe

• expected ~2.5keVnr threshold

• linitial resu New COHERENT detectors

Germanium:

• P-Type Point Contact Ge detectors well-suited to

precision CEVNS measurements

• 6 - 2kg detectors ran with 1.7MW SNS beam this :

• expected ~2.5keVnr threshold

• littial results e
-
-
-

-
-
-
-

New COHERENT detector: NaI

in progress

Model of 5-module layout

One module test assembly at Duke

commissioning \blacksquare We "Sodium iodide (Nal) Neutrino (v) Experiment TonnE-scale"

- -
	-
	- Steel, water, & lead shielding \circ
	- o 5 modules to be deployed by end of 2022 \rightarrow 2.4 tonnes!
- Order of magnitude target mass increase from \circ 185-kg NalvE
- o Planned sensitivity to CEvNS on ²³Na nucleus, as well as CC on ²³Na and ¹²⁷l
	- \circ Testing N² dependence of σ _{CEvNS} with lightest nucleus in COHERENT

Dual-gain base design \rightarrow lowenergy CEvNS and high-energy CC signals can be read out from same crystal

5/16/22 \blacksquare R. Tayloe, NDM22 \blacksquare Research of the contract of the contra

ψ

Future ton-scale argon detector for COHERENT: COH-Ar-750

Overview

-
- Future ton-scale argon detector for COHERENT: COH-Ar-750
Overview
• Single-phase LAr (scintillation-only) calorimeter, ~750/600kg total/fiducial volume
• Purpose-designed cryostat w/LN2 precool, and dual cryocooler for
• liquification/gas purification. Value ton-scale argon detector for COHERENT: COHERENT

Overview

• Single-phase LAr (scintillation-only) calorimeter, ~750/60

• Purpose-designed cryostat w/LN2 precool, and dual cry

• water, Cu, Pb shielding scheme

• w • Vietner ton-scale argon detector for COHERENT: COH-Ar-7

• Single-phase LAr (scintillation-only) calorimeter, ~750/600kg to

• Purpose-designed cryostat w/LN2 precool, and dual cryocool

• Light collection: 3"PMTs

• wa
-
-
- \cdot \Rightarrow 3000 CEvNS, 500 inelastic CC/NC events/yr to further physics reach of COHERENT

08/23/23 R. Tayloe, NuFact2023

COH-Ar-750: status

-
-
- COH-Ar-750: status

 phase 1 detector funded

 on track for commissioning by end of 2

 parts procurement/fabrication/testing underway
- COH-Ar-750: status

 phase 1 detector funded

 on track for commissioning by end of 2

 parts procurement/fabrication/testing underway

 also testing for phase 2 upgrades: SiPMs,

Xenon-doping, etal

 140. A ton-scal Xenon-doping, etal

WG6: Detector Physics Oral Parallel

Office of Science

R. Tayloe, NuFact2023 31 . The contract of the

-
-
-
- **EVNS π DAR experiments CCM**
• Coherent CAPTAIN-Mills (CCM)
• LANL Lujan neutron facility @ ~100kW
• 7 ton LAr scintillation detector
• First results on light DM, work on CEvNS -

CEVNS π DAR experiments - CCM

• Coherent CAPTAIN-Mills (CCM)

• LANL Lujan neutron facility @ ~100kW

• 7 ton LAr scintillation detector

• First results on light DM, work on CE∨NS

progressing • 270 CEVNS π DAR experiments - CCM

• Coherent CAPTAIN-Mills (CCM)

• LANL Lujan neutron facility @ ~100kW

• 7 ton LAr scintillation detector

• First results on light DM, work on CEvNS

100

progressing

100 progressing

CEvNS π DAR experiments - CCM

• Coherent CAPTAIN-Mills (CCM)
• LANL Lujan neutron facility @ ∼100kW
• Z ton LAr scintillation detector EVNS π DAR experiments - CCM

• Coherent CAPTAIN-Mills (CCM)

• LANL Lujan neutron facility @ ~100kW

• 7 ton LAr scintillation detector

• First results on light DM, work on CEVNS

progressing

100 kW max

100 kW max HIPPO
Filght Path

ψ

Beyond neutrino alley, at SNS:

Proton Power Upgrade

PPU project: Double the power of the existing accelerator structure

- First Target Station (FTS) is optimized for thermal neutrons
- Increases the brightness of beams of pulsed neutrons
- Provides new science capabilities for atomic resolution and fast dynamics
- Provides a platform for STS

Larger Neutrino Experimental Hall

Possible at STS: 2 10-ton Detectors

Second Target Station

STS project: Build the second target station with initial suite of beam lines

- Optimized for cold neutrons
- World-leading peak brightness
- Provides new science capabilities for measurements across broader ranges of temporal and length scales, real-time, and smaller samples

Slide from Ken Herwig, Workshop on Fundamental Physics at the Second Target Station (FPSTS18)

122. Physics Opportunities at a PIP-II Beam Dump Facility and Beyond

Jacob Zettlemoyer **Q** 25/08/2023, 17:42

VG5: Neutrinos Beyond ... Oral Parallel

+ future at Fermilab + future at ESS

ESSnuSB+ mini workshop (20th of Aug. 2023)

Date: Sunday 20 Aug., 2023, 14:00 - 16:30 (KST)

08/23/23 R. Tayloe, NuFact2023

- Dark matter Experiments CEvNS

CEvNS is important background for O(10)-ton

direct DM searches the neutrino "floor" (or

floor" (or Dark matter Experiments - CEvNS
• CEvNS is important background for O(10)-ton
direct DM searches – the neutrino "floor" (or
"fog") and the matter Experiments - CEvNS
CEvNS is important background for O(10)-ton
direct DM searches – the neutrino "floor" (or
"fog")
O(10)-ton experiments setting limits, should see "fog") 9 Dark matter Experiments - CE∨NS
• CE∨NS is important background for O(10)-ton
direct DM searches – the neutrino "floor" (or
• "fog")
• O(10)-ton experiments setting limits, should see
• evidence soon
• Should see supern **Dark matter Experiments - CEvNS**

• CE∨NS is important background for O(10)-ton

direct DM searches – the neutrino "floor" (or

"fog")

• O(10)-ton experiments setting limits, should see

evidence soon

• Should see supe
- evidence soon
- via CEvNS
- independently

R. Tayloe, NuFact2023 34 34 34 34 35 34 35 35 36 37 38 37 38 38 39 39 30 31 32 34 35 36 37 38 39 39 30 31 32 34

Summary

- $\frac{\text{Summary}}{\text{C}\text{EvNS}}$
• CEvNS process measurements have come from a
• First measurements of CEvNS on CsI, Ar have dream to reality in ~10 years
- been made with COHERENT at the SNS.
- see signals soon.
- additional/larger detectors, for more precise measurements at multiple sites.

R. Tayloe, NuFact2023

ψ

CEvNS: Coherent Elastic v-Nucleus Scattering: vA→vA

From NuInt2012: Nunternational Workshop on Neutrino-Nucleus

Ton-scale detector for the CENNS experiment

CENNS Physics Cases

· It's never been observed

Requires a ton-scale detector with \sim 10 keV energy threshold

$$
R \simeq \mathcal{O}(10^3) \left(\frac{\sigma}{10^{-39} cm^2}\right) \times \left(\frac{\Phi}{10^{13} \nu/year/cm^2}\right) \times \left(\frac{M}{ton}\right) events/year
$$

CEvNS: Coherent Elastic v-Nucleus Scattering: vA→vA

From NuInt2012: **WE AVENUE AND MULLET AND THE SET OF STATE IN THE STATE IN THE STATE IN THE STATE IS SET OF A SET**

CENNS Physics Cases

· It's never been observed

ψ

Ton-scale detector for the CENNS experiment

done

Requires a ton-scale detector with \sim 10 keV energy threshold

$$
R \simeq \mathcal{O}(10^3) \left(\frac{\sigma}{10^{-39} cm^2} \right) \times \left(\frac{\Phi}{10^{13} \nu/year/cm^2} \right) \times \left(\frac{M}{ton} \right) events/year
$$