Summary of CEvNS Experiments *R.Tayloe, Indiana U*

Outline:

- motivation/overview
- CEvNS experiments withReactors
 - Solar/atmospheric v
 - stopped pion v

Status and future

Thanks to all for contributions to this talk, especially those from "Magnificent CEvNS"

workshop series

N**#FACT 2023**

The 24th International Workshop on Neutrinos from Accelerators August 21 ~ 26, 2023 at Seoul National University, Seoul, Korea

ψ

CEvNS: Coherent Elastic v-Nucleus Scattering: $vA \rightarrow vA$

CEvNS probes the nucleus coherently, yielding clear tests of the standard model weak interaction with the nucleus. CEvNS total, differential cross sections:

...CEvNS is largest v channel at ~10 MeV on nuclei, eg Cs,I, Ar

$$\sigma \approx \frac{G_F^2}{4\pi} (N - (1 - 4\sin^2\theta_W)Z)^2 E_v^2$$

$$\frac{d\sigma}{dT} = \frac{G_F^2}{4\pi} Q_W^2 M_A \left(1 - \frac{M_A T}{2E_\nu^2}\right) F(q^2)^2$$

- v flavor independent

Also:

• coupling to other neutral particles possible (eg accelerator-produced dark matter)

Coherent Elastic v-Nucleus Scattering:

Physics reach of CEvNS (and related)

- Supernovae (SN)
 - Largest σ in SN dynamics
 - possible SN detection channel
- Nuclear Physics: nuclear form factors
- Standard Model tests:
 - non-standard interactions (NSI)
 - weak mixing angle: $\sin^2 \theta_w$
 - v magnetic moment
- v oscillations: Sensitive to sterile v
- Dark Matter:
 - Important background for 10-ton direct searches
 - detectors sensitive for accelerator produced DM

Coherent Elastic v-Nucleus Scattering:

Physics reach of CEvNS (and related)

- Supernovae (SN)
 - Largest σ in SN dynamics
 - possible SN detection channel
- Nuclear Physics: nuclear form factors
- Standard Model tests:
 - non-standard interactions (NSI)
 - weak mixing angle: $\sin^2 \theta_w$
 - v magnetic moment
- v oscillations: Sensitive to sterile v
- Dark Matter:
 - Important background for 10-ton direct searches
 - detectors sensitive for accelerator produced DM

 much interest/activity from theoretical community eg: M. Cadeddu, etal,

33. Overview of physics results with coherent elastic neutrino-nucleus scattering data
 ▲ Matteo Cadeddu
 ④ 22/08/2023, 16:50
 WG5: Neutrinos Beyond ... Oral Parallel
 Co-authors: M. Atzori Corona, N.Cargioli, F. Dordei, C. Giunti, Y.F. Li, C.A. Ternes, Y.Y. Zhang

U

ψ

CEvNS: Experimental constraints

- "coherent" : momentum transfer small compared to nuclear radius \Rightarrow E_v <~ 50 MeV
- then max nuclear recoil energy (E_{nr}) <10-100 keV
- Detection of nuclear recoil (over backgrounds) is quite a challenge

And so, after ~50 years since prediction of this process, with great strides in v sources and detectors, we are now able to measure CEvNS

08/23/23

R. Tayloe, NuFact2023

CEvNS: Experimental strategies

- coherence condition \Rightarrow need $E_v < 50 \text{ MeV}$, so
 - Reactor v sources : $E_v \sim 5 \text{ MeV}$, $E_{nr} \sim 5 \text{ keVnr}$

R. Tayloe, NuFact2023

CEvNS: Experimental strategies

- coherence condition \Rightarrow need $E_v <~ 50 \text{ MeV}$, so
 - pi DAR v sources : $E_v < 50 \text{ MeV}$, $E_{nr} \sim 50 \text{ keVnr}$

R. Tayloe, NuFact2023

08/23/23

7

CEvNS: Experimental strategies

- coherence condition \Rightarrow need $E_v <~ 50 \text{ MeV}$, so
 - Reactor v sources : $E_v \le 5 \text{ MeV}$, $E_{nr} \ge 5 \text{ keVnr}$
 - pi DAR v sources : $E_v \leq 50 \text{ MeV}$, $E_{nr} \sim 50 \text{ keVnr}$
 - Other sources: solar, atmospheric v, supernova

Low E recoil \Rightarrow low background, sensitive detectors

- Many different technologies: inorganic crystals, solid state, liquid noble gas

08/23/23

R. Tayloe, NuFact2023

Ψ

ψ

Experiment	Detetctor Type	Location	Source
COHERENT	Csl, Ar, Ge, Nal	USA	πDAR
ССМ	Ar	USA	πDAR
JSNS ²	TBD	Japan	πDAR
ESS	Csl, Si, Ge, Xe	Sweden	πDAR
BULLKID	Si/Ge	Italy	Reactor
CHILLAX	Ar	TBD	Reactor
CONNIE	Si CCDs	Brazil	Reactor
CONUS	HPGe	Germany	Reactor
DRESDEN II	PCGe	USA	Reactor
NEWS-G	Ar+CH4	Canada	Reactor
MINER	Ge/Si cryogenic	USA	Reactor
NEON	Nal(TI)	Korea	Reactor
NUCLEUS	Cryogenic CaWO ₄ , Al ₂ O ₃	Europe	Reactor
NUXE	Xe		Reactor
√GEN	Ge PPC	Russia	Reactor
RED-100	LXe dual phase	Russia	Reactor
Ricochet	Ge, Zn bolometers	France	Reactor
TEXONO	p-PCGe	Taiwan	Reactor
SBC	Scint. Bubble Chamber	USA	Reactor

From: arXiv:2209.06872, and others

SNOWMASS NEUTRINO FRONTIER: NEUTRINO INTERACTION CROSS SECTIONS (NF06) TOPICAL GROUP REPORT

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

+ future at Fermilab and others...

122. Physics Opportunities at a PIP-II Beam Dump Facility and Beyond ▲ Jacob Zettlemoyer ③ 25/08/2023, 17:42 WG5: Neutrinos Beyond ... Oral Parallel

08/23/23

CEVNS world summary

CEvNS reactor experiments

CEvNS Reactor Experiments - CONUS

CONUS

- 5 years of operation at Brokdorf reactor with 4 x 1kg Ge detectors at 17m from 3.9GW reactor
- Very low energy threshold (~200 eVee)
- low backgrounds in ROI
- Assume Lindhard quenching model for low E extrapolation
- New limit on CEvNS signal ~x2 above SM
- arXiV: 2011.00210 , etal
- Upgrading to CONUS+ soon

08/23/23

R. Tayloe, NuFact2023

More Reactor Experimental results

Dresden II :

- 3kg P-contact Ge detectors 10m from Dresden 3GW core, 96 days
- "..preference for CEvNS signal is found"
- however debate on low-E behavior of quenching model and tension with CONUS result

DOI: 10.1103/PhysRevLett.129.211802

Aside:

 "quenching" = E (nuc recoil)/E(electron recoil) is important and challenging for low-E cevns detectors

R. Tayloe, NuFact2023

ψ

More Reactor Experimental results

- vGen:
- 1.4kg HPGe detectors 11m from KNPP reactor 3GW core, 94 days,
- spectrum consistent with background

DOI: 10.1103/PhysRevD.106.L051101

Experiment	Detetctor Type	Location	Source
COHERENT	Csl, Ar, Ge, Nal	USA	πDAR
ССМ	Ar	USA	πDAR
JSNS ²	TBD	Japan	πDAR
ESS	Csl, Si, Ge, Xe	Sweden	πDAR
BULLKID	Si/Ge	Italy	Reactor
CHILLAX	Ar	TBD	Reactor
CONNIE	Si CCDs	Brazil	Reactor
CONUS	HPGe	Germany	Reactor
DRESDEN II	PCGe	USA	Reactor
NEWS-G	Ar+CH4	Canada	Reactor
MINER	Ge/Si cryogenic	USA	Reactor
NEON	Nal(TI)	Korea	Reactor
NUCLEUS	Cryogenic CaWO ₄ , Al_2O_3	Europe	Reactor
NUXE	Xe		Reactor
vGEN	Ge PPC	Russia	Reactor
RED-100	LXe dual phase	Russia	Reactor
Ricochet	Ge, Zn bolometers	France	Reactor
TEXONO	p-PCGe	Taiwan	Reactor
SBC	Scint. Bubble Chamber	USA	Reactor

CEvNS at reactors

• Many other reactor experiments being planned and R&D'd.

ylene Cas

- Eg: NEON 15kg Nal @ Hanbit reactor SKr
- others

Calibration access holes

Borated Polyethylene

A-side

08/23/23

R. Tayloe, NuFact2023

<u>CEvNS π DAR (accelerator) experiments</u>

<u>CEvNS π DAR experiments - COHERENT</u>

- At ORNL Spallation Neutron Source (SNS)
- world's most powerful pulsed proton beam (1.4 MW, 1 GeV) (and upgraded to 2 MW, 1.3 GeV 2024)
- pulsed (60 Hz, 600ns spill time)...
- ~7000 MWhr/year, 1.5E23 protons/year

08/23/23

R. Tayloe, NuFact2023

COHERENT experiment at SNS/ORNL

- in "neutrino alley"
- with low beam-related backgrounds
- 20-29 m from target

R. Tayloe, NuFact2023

COHERENT experimental strategy at SNS/ORNL

Phase 1:

Observe CEvNS process and measure N² dependence with multiple targets/detector technologies

Phase 2: Precision measurements of CEvNS (and related) physics with larger/upgraded targets/detectors

COHERENT past, current, CEvNS future detectors

Target	Technology	Fid. Mass (kg)	Threshold (keV _{nr})	Commission dates	Pubs/status
Csl[Na]	Scintillation	14.6	6.5	2015	1 st result, 2017: 10.1126/science.aao0990 updated results 10.1103/PhysRevLett.129.081801 detector removed
Liquid Ar	Scintillation	24.4/610	20	2017/2024	1 st result, 2019: 10.1103/PhysRevLett.126.012002, new results from more soon
Ge	Ionization	18	0.5	2023	commissioning
Nal[Tl]	Scintillation	2500	13	2023	commissioning:

R. Tayloe, NuFact2023

COHERENT with Csl[Na]

Csl[Na] scintillating crystal:

- 14.6 kg sodium-doped Csl
- high light yield (13.35 pe/keVee)
- Manufactured by Amcrys-H
- Single R877-100 PMT

2017 results (~1.5yrs of data)

- 6.7 σ discovery of CEvNS
- consistent w/SM within 1σ

5/16/22

R. Tayloe, NDM22

COHERENT with Csl[Na]

- updated results with 2.2x more data (compared to 2017 result)
- analysis improvements
- new quenching factor (nuclear response) measurements/analysis
- resulting in reduced errors

ψ

CsI[Na] nuclear response calibration

5/16/22

Light yield/energy Recoil Energy (keV_{nr}) 15 20 25 30 event time (wrt beam pulse) 35 40 45 10 300 +Data Residual + Data Residual V_e CEvNS Ve CEvNS 20 Excess Counts / μs 00 00 $\Box \overline{v}_{\mu} CEvNS$ **□**∇_µ CEvNS Excess Counts / PE Vµ CEvNS \mathbf{v}_{μ} CEvNS BRN + NIN BRN + NIN 10 3 t_{rec} (μs) 10 20 30 40 50 2 0 4 5 0 60 6 PE COHERENT, PRL 129 081801 **No-CEvNS** rejection 11.6 σ SM CEvNS prediction $341 \pm 11(th) \pm 42(ex)$ Fit CEvNS events 306 ± 20 Fit χ^2/dof 82.4/98 **CEvNS** cross section $165^{+30}_{-25} \times 10^{-40} \text{ cm}^2$ $189 \pm 6 \times 10^{-40} \, \text{cm}^2$ SM cross section

COHERENT, updated Csl results:

5/16/22

COHERENT, updated Csl results, physics:

- Updated CsI data improves upon previous non-standard interaction (NSI) constraints and eliminates a degeneracy in LMA solar oscillation solution
- Separately measured v_{μ}/v_{e} cross sections as allowed in NSI scenarios.
- See arXIv: 2110.07730, 2111.02477

fit v_{μ}/v_{e} cross sections

The CENNS-10 (COHAr-10) Detector:

Specs:

- single phase LAr scintillation
- fiducial volume = 24kg
- 28m from target
- Energy threshold ≈ 20keVnr
- ≈140 CEvNS events/SNS-year (7GWhr)
- Production run in current configuration 2017-2021

CENNS-10 analysis:

- From first 1.5 years of data...
- 2 blind, independent analyses
- Likelihood fit of beam data in energy, time, particle-ID
- Evidence for CEvNS in LAr at >3 σ
- DOI:

10.1103/PhysRevLett.126.012002

 data set has since increased by ~3x, updated results in near future

Fit values: V _{CEvNS} V _{BRN} , prompt V _{BRN} , delayed V _{SS} Fotal events fit	$\begin{array}{c} 159 \pm 43 \\ 553 \pm 34 \\ 10 \pm 11 \\ 3131 \pm 23 \\ 3853 \end{array}$	Recoil Energy (keVnr) 0 20 40 60 80 100 1
Fit results: Null significance (stat. only) Null significance (stat.+sys.)	3.9σ 3.5σ	0.2 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0

 2.3 ± 0.7

Measured $\sigma (\times 10^{-39} \text{ cm}^2)$

08/23/23

R. Tayloe, NuFact2023

CENNS-10 results:

- Measured cross section agrees
 between with standard model
- NSI parameters further constrained

 much interest from theoretical community eg: doi:10.1103/PhysRevD.102.015030

08/23/23

R. Tayloe, NuFact2023

COHERENT LAr analysis:

•

• but now need to increase stats, lower systematics, to realize a full low-E neutrino program

Important new addition to COHERENT : D2O

D₂O flux normalization detector:

- reduce current 10% flux error to 2-3% from known v-d CC cross section allowing more precise measurements of CEvNS etc with other detectors
- Light collection with PMT's on one endcap
- · 670kg heavy water fiducial volume in acrylic vessel
- · Installed this summer, commissioning underway
- JINST 16 (2021) 08, 08.

New COHERENT detectors

Germanium:

- P-Type Point Contact Ge detectors well-suited to precision CEvNS measurements
- 6 2kg detectors ran with 1.7MW SNS beam this summer
- expected ~2.5keVnr threshold
- Initial results expected this fall

Specifications:

- Mass > 2kg each
- Low-noise pulse-reset preamplifiers:
- 150-eV FWHM pulser resolution
 ~0.4 keVee (2.5 keVnr) CEvNS detection threshold
- Low-background cryostat materials, thick window.

08/23/23

R. Tayloe, NuFact2023

28

New COHERENT detector: Nal

 Installation/ commissioning in progress

Model of 5-module layout

One module test assembly at Duke

The next generation: NalvETe

"Sodium iodide (NaI) Neutrino (v) Experiment TonnE-scale"

- Modular design:
 - 7.7 kg Nal[Tl] crystals with attached PMTs
 - 63 crystals per module
 - Steel, water, & lead shielding
 - 5 modules to be deployed by end of 2022 \rightarrow 2.4 tonnes!
- Order of magnitude target mass increase from 185-kg NalvE
- Planned sensitivity to CEvNS on ²³Na nucleus, as well as CC on ²³Na and ¹²⁷I
 - Testing N² dependence of σ_{CEVNS} with lightest nucleus in COHERENT

ψ

Dual-gain base design \rightarrow lowenergy CEvNS and high-energy CC signals can be read out from *same* crystal

R. Tayloe, NDM22

ψ

Future ton-scale argon detector for COHERENT: COH-Ar-750

Overview

- Single-phase LAr (scintillation-only) calorimeter, ~750/600kg total/fiducial volume
- Purpose-designed cryostat w/LN2 precool, and dual cryocooler for liquification/gas purification.
- Light collection: 3"PMTs
- water, Cu, Pb shielding scheme
- \Rightarrow 3000 CEvNS, 500 inelastic CC/NC events/yr to further physics reach of COHERENT

R. Tayloe, NuFact2023

COH-Ar-750: status

- phase 1 detector funded ٠
- on track for commissioning by end of 2 ٠
- parts procurement/fabrication/testing underway ٠
- also testing for phase 2 upgrades: SiPMs, • Xenon-doping, etal

140. A ton-scale single phase LAr CEvNS detector Laemin Jeong O 25/08/2023, 11:40 WG6: Detector Physics Oral Parallel

Office of Science

U.S. DEPARTMENT OF

R. Tayloe, NuFact2023

CEvNS π DAR experiments - CCM

- Coherent CAPTAIN-Mills (CCM)
- LANL Lujan neutron facility @ ~100kW
- 7 ton LAr scintillation detector
- First results on light DM, work on CEvNS progressing

LANSCE-Lujan Facility 20 Hz 270 ns beam width, FWHM = 135 ns 100 kW max $\int_{\text{Fight Path 5}}^{10 \text{m}} \int_{\text{Fight Path 5}}^{10 \text{m}} \int_{10 \text{m}}^{10 \text{m}} \int_{10 \text{m}}^{10$

ψ

Beyond neutrino alley, at SNS:

Proton Power Upgrade

PPU project: Double the power of the existing accelerator structure

- First Target Station (FTS) is optimized for thermal neutrons
- Increases the brightness of beams of pulsed neutrons
- Provides new science capabilities for atomic resolution and fast dynamics
- Provides a platform for STS

Larger Neutrino Experimental Hall

Possible at STS: 2 10-ton Detectors

Second Target Station

STS project: Build the second target station with initial suite of beam lines

- Optimized for cold neutrons
- World-leading
 peak brightness
- Provides new science capabilities for measurements across broader ranges of temporal and length scales, real-time, and smaller samples

Slide from Ken Herwig, Workshop on Fundamental Physics at the Second Target Station (FPSTS18)

+ future at Fermilab

122. Physics Opportunities at a PIP-II Beam Dump Facility and Beyond
▲ Jacob Zettlemoyer
④ 25/08/2023, 17:42

WG5: Neutrinos Beyond ... Oral Parallel

+ future at ESS

ESSnuSB+ mini workshop (20th of Aug. 2023)

Date: Sunday 20 Aug., 2023, 14:00 - 16:30 (KST)

Ψ

Dark matter Experiments - CEvNS

- CEvNS is important background for O(10)-ton direct DM searches – the neutrino "floor" (or "fog")
- O(10)-ton experiments setting limits, should see evidence soon
- Should see supernova signals in these detectors via CEvNS
- Important to measure CEvNS cross section independently

J. Billard, E. Figueroa-Feliciano, and L. Strigari, arXiv:1307.5458v2 (2013).

R. Tayloe, NuFact2023

<u>Summary</u>

- CEvNS process measurements have come from a dream to reality in ~10 years
- First measurements of CEvNS on Csl, Ar have been made with COHERENT at the SNS.
- Other experiments, including at reactors, likely to see signals soon.
- Multiple physics motivations drive further work on additional/larger detectors, for more precise measurements at multiple sites.

ψ

08/23/23

R. Tayloe, NuFact2023

COHERENT collaboration

ψ

CEvNS: Coherent Elastic v-Nucleus Scattering: $vA \rightarrow vA$

From NuInt2012:

Nulnt12 : Eighth International Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region

16:00 - 14 Describilities for direct nu-Argon cross section measurements in the low energy region Prof. Flavio Cavanna	Helium and lead observatory od supernovae neutrinos	Prof. Clarence Virtue
ssibilities for direct nu-Argon cross section measurements in the low energy region Prof. Flavio Cavanna		16:00 - 16:30
	Possibilities for direct nu-Argon cross section measurements in the low energy region	Prof. Flavio Cavanna
16:30 - 1		16:30 - 17:00

Ton-scale detector for the CENNS experiment

CENNS Physics Cases

• It's never been observed

Requires a ton-scale detector with ~10 keV energy threshold

$$R \simeq \mathcal{O}(10^3) \left(\frac{\sigma}{10^{-39} cm^2}\right) \times \left(\frac{\Phi}{10^{13} \nu/y ear/cm^2}\right) \times \left(\frac{M}{ton}\right) events/y ear$$

CEvNS: Coherent Elastic v-Nucleus Scattering: $vA \rightarrow vA$

From NuInt2012:

CENNS Physics Cases

• It's never been observed

NT (AZIL Maaaaa	Nullit 12 : Eighth International Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region	
NT (AZIL Maaaaa	Interactions in the Few-GeV Region	

Helium and lead observatory od supernovae neutrinos	Prof. Clarence Virtue 🦉
	16:00 - 16:30
Possibilities for direct nu-Argon cross section measurements in the low energy region	Prof. Flavio Cavanna 🤞
	16:30 - 17:00
Coherent elastic neutrino scattering	Dr Yoo Jonghee

12.00 - 10.00

ψ

Ton-scale detector for the CENNS experiment

done

next step

Requires a ton-scale detector with ~10 keV energy threshold

$$R \simeq \mathcal{O}(10^3) \left(\frac{\sigma}{10^{-39} cm^2}\right) \times \left(\frac{\Phi}{10^{13} \nu / y ear / cm^2}\right) \times \left(\frac{M}{ton}\right) events / y ear$$

10/27/22

R. Tayloe, NuInt2022