NuFACT 2023

The 24th International Workshop on Neutrinos from Accelerators August 21 ~ 26, 2023 at Seoul National University, Seoul, Korea

Hyper-Kamiokande

NEIL MCCAULEY

UNIVERSITY OF LIVERPOOL

ON BEHALF OF THE HYPER-KAMIOKANDE COLLABORATION

NUFACT 2023

3rd generation underground water Cherenkov detector in Kamioka

Kamiokande (1983-1996)

- Atmospheric and solar neutrino "anomaly"
- Supernova 1987A

Birth of neutrino astrophysics

Super-Kamiokande (1996 - ongoing)

- Proton decay: world best-limit
- Neutrino oscillation (atm/solar/LBL)
 ➤ All mixing angles and Δm²s

Discovery of neutrino oscillations

Hyper-Kamiokande (start operation in 2027)

- Extended search for proton decay
- Precision measurement of neutrino oscillation including CPV and MO
- Neutrino astrophysics
 Explore new physics

The Hyper-Kamiokande Detector

258 kton Water Cherenkov detector ~ 8 times larger than Super-Kamiokande

20000 50 cm PMTs

~1000 mPMTs

7200 OD units

- 8 cm PMT
- Wavelength shifting plate

A Long Baseline Experiment

ND280

ND280 upgrade is part of the T2K experiment and will still be online at start of Hyper-K

- Operational from 2024
- See T2K talks for more details

New Detectors

- sFGD
- hTPCs
- Time of flight

Constrain predictions for far detector

• Measure flux X cross section

Magnetised so can measure wrong sign backgrounds

Detailed kinematic measurements to constrain and develop cross section models

IWCD

Approx 1 km from neutrino target

- 1 kton scale water Cherenkov
- Use mPMTs for readout
- Move detector up and down shaft to sample different off- axis angles

Constrain neutrino energy misreconstruction

Measure electron neutrino cross sections

Neutrino Oscillation Physics

 Neutrino Oscillations, CP Violation, Mass Ordering, Sterile Neutrinos, Non-Standard Interactions

Neutrino Astrophysics

 Supernova Bursts, Pre-supernova Neutrinos, Diffuser Supernova Neutrino Background, Solar Neutrinos

BSM Physics

• Nucleon Decay

Measurement of Oscillations

Measure CP violation through v_e appearance

Few % statistical uncertainty after 10 years operation with > 1000 v_e and $\overline{v_e}$ signal events • Systematics limited

Break parameter degeneracies with atmospheric neutrinos

Near detectors crucial to constrain far detector expectation

What do we see in HK?

Electron and muon like rings

- Spectrum and rate
- Neutrino and antineutrino running

Rate and spectrum depend on δ_{CP}

Systematics

- Flux
- Cross Sections
- Cross section effects on neutrino energy reconstruction
- Energy Scale/Resolution
- Particle Identification
- Reconstruction

Constraints from IWCD Neutrino flux and spectrum vary with Selected 1-ring e-like events Selected 1-ring e-like events

We move the detector to different angles

- Neutrino interaction constraints
- Understand neutrino energy reconstruction

off axis angle

IWCD improves measurement of $\boldsymbol{\nu}_{e}$ interactions

- $\,\circ\,$ Self-shielding & improved π^0 rejection
- Improved photon background compared to ND280
- $^\circ\,$ Aim to significantly improve $\nu_e/\overline{\nu_e}$ cross section ratio ~4%

CP Measurement Prospects

With known mass ordering can achieve 5σ CP conservation exclusion for true δ_{CP} =- $\pi/2$ in 2-3 years

After 10 years 60% of parameter space excluded at $>5\sigma$

Adding Atmospheric Neutrinos

Adding atmospheric neutrinos can resolve mass ordering degeneracies

Enhancement of $p(v_{\mu} \rightarrow v_{e})$ for NO and $p(\overline{v_{\mu}} \rightarrow \overline{v_{e}})$ for IO

Energy [GeV]

 $p(v_{\mu} \rightarrow v_{e}) NO$

-0.5

0.9

0.8

0.7 0.6 0.5

0.4

0.3

0.2

0.1

Proton Decay $p \rightarrow e^+ \pi^0$

Proton decay is predicted by grand unified theories

Suppression by ${}^{1}/_{M_{X}^{4}}$ very long lifetimes

HK is only realistic option to probe 10³⁵ years

Proton Decay $p \to K^+ \bar{v}$

The $p \rightarrow K^+ \bar{v}$ is an alternative decay channel

Clean signatures

 $K^+ \to \mu^+ \nu$ (64%) 236 MeV μ^+

 $K^+ \rightarrow \pi^+ \pi^0$ (21%) 205 MeV π^+ back to back photons

Year

EUR PHYS J A 52 87 (2016)

Day/Night Asymmetry Sensitivity

Solar Neutrinos

Solar neutrino survival probability strong function of energy

Sensitivity to new physics in transition region

Hyper-Kamiokande will search for the up-turn

Hyper-Kamiokande will also search for the day night asymmetry

16

Supernova Neutrinos

Hyper Kamiokande is sensitive to neutrinos from

- Core-Collapse Supernova
- Pre-Supernova Si burning
- The Diffuse Supernova Neutrino Background

Construction Timeline

Underground Facility

2nd - 4th Ring

1st Ring

5th & 6th Ring

Access tunnels completed

Centre of dome reached June 2022

Cavern dome constructed through consecutive rings

Currently excavating 5th ring

Construction on track!

Excavation - Tunnels

Excavation – Cavern & Dome

Photomultiplier Tubes

20 000 Hamamatsu 50 cm box-and-line PMTs

• Production, delivery and QA ongoing

~1000 multi PMT modules

- 19 3 inch PMTs
- Improved detector calibrations

~7200 8 cm OD PMTs with wavelength shifting plate

OD studies underway to assess veto using OD & ID. OD channel number reduction

Electronics

Front-end electronics in underwater vessels

Two vessel types

- ID vessels: 24 channels read out by 2 PCBs
- Hybrid ID + OD: 20 ID & 12 OD channels

Preliminary

2 OD FE boards

ID 12 channel-front end board

OD 6 channel-front end board

PhotoSensor Test Facility

Photogrammetry Testing

Calibration

Optical Sources, radioactive sources and control samples

Determine detector parameters and measure systematics

Precalibration Programme & Photogrammetry

Light Injection

- Diffusers and collimators
- mPMT system
- OD injectors

Electron Linac

3-24 MeV electrons

Radioactive Sources

- DT Source ¹⁶N
- AmBe + BGO tagged neutrons
- $\circ~$ Ni/Cf 9 MeV γ cascade

Summary

Hyper Kamiokande is a world leading neutrino detector due to start in 2027

- World's Largest underground facility 260 kton Water Cherenkov Detector
- Tunnels completed
- Dome construction close to completion
- PMT delivery ongoing
- Design being finalised for electronics, calibration systems, PMT support structure

It will produce world leading results in

- $^\circ\,$ CP Violation 60% of parameter space excluded at >5 σ after 10 years
- MO sensitivity through combination with atmospheric neutrinos
- Nucleon Decay > 10³⁵ years for $p \rightarrow e^+ \pi^0$
- Supernova Neutrinos Bursts, Diffuse Supernova Neutrino Background, PreSN neutrinos
- Solar Neutrinos Upturn and Day-Night Asymmetry