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Classical and Quantum Descriptions of the Channeling Effect 

as Mutually Complementary Approximations

The Content. 
1. The models of averaged planar and axial channeling potentials

2. Approaches that help to obtain analytical results 

- co-moving reference system (CMRS)

- mixed quantum – classical approaches

- interpreting the crystal lattice potential as a flow of ‘photons’ in CMRS

- Re-using known results from quantum and atomic physics……

3. Examples of applying simplifying  analytical approaches 

- calculations of  the transversal motion energy levels and radiation spectra

- Estimating Intensity of radiation from channeling pelectrons

- Considering Inverse Compton scattering in crystal, resulting in conversion of 

the electron energy into one photon’
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Planar averaged potential

The channeling effect occurs when a charged 

particle enters a crystal under small  angle (less, than 

Lindhard’s critical channeling angle) to some crystal 

axis or plane: θ<θL ~ (U0 /E)1/2 (E – the particle 

relativistic energy, U0 - the depth/height of the 

averaged crystal potential) 

In Planar case  the crystal potential is 1D. For 

positively charged particles it looks like a set  of close 

to parabolic potential channels between densely 

packed planes. For negatively charged electrons 

channels are associated with atomic planes and the 

picture is inverse. The transversal motion of 

channeled particle in both cases is finite and limited 

by the potential barrier's. in most of crystals for 

typical densely packed directions U0 ~ 20-50 eV.    
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Axial averaged potentials?

In axial case the crystal potential is 2D and the 

transversal motion of negatively charged 

electrons, orbiting around a densely packed  

crystal axis, is similar to the motion of electrons in 

atoms. The axial channeling can be considered 

as a realization of 2D relativistic atom with 

controlled variable potential parameters (E, U0)
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In literature one can find  many potential models, used to describe the axial 

channeling motion, starting from 2D-Coulomb  model U ~1/ρ (ρ – the 

transversal to the channeling axis radial coordinate) to ~logarithmic potential 

U = U0 K(r) (K(r) – the special McDonnald’s function), obtained by accurate 

averaging of screened Coulomb atomic potentials over channeling direction

The more realistic axial potential shall not be divergent at  = 0 point (with 

regard to thermal motion of crystal lattice ions). One of simple realistic models 

is a cone potential: U = -U0 (1- ρ/R), (R - the fitting parameter, close to the 

screening radius of  crystal lattice ions) with U0 ~ several dozen eV. 



Channeling of Relativistic Electrons in Crystalls

What has to be calculated?

What is interesting to know about 

channeling motion?
- the transversal motion energy spectrum

- the spectrum and intensity of 

electromagnetic radiation,  

- Conversion of electron energy into a 

high energy photon (inverse Compton 

scattering)
- Other effects… 

γ
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Channeling of Relativistic Electrons in Crystalls

What has to be calculated and how to do it correctly?

1. The transversal motion energy spectrum
The “correct way”: to solve the relativistic 

Schroedinger equation (= the quadrated Dirac 

equation)

In planar channeling the energy eigenvalues can be calculated analytically 

with parabolic potential: En = (2U0/E)1/2(ħ/l)(2n – 1); n = 1, 2, 3…) or 

with less realistic but simple Kronig-Penny (rectangular) potential 

U(x) = 0 if |x|<R and U(x) = U0 if |x|>R . => En = (2U0/E)1/2(ħ/l)n2
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With inverse parabolic potential (realistic for electrons) and with other 

potential models only numerical solutions are possible 



Channeling of Relativistic Electrons in Crystalls

What has to be calculated and how to do it correctly?

1. The transversal motion energy 

spectrum in axial channeling

Analytical calculation of eigenvalues in 2D-axial case is possible with Coulomb potential/ 

U(ρ) ~ -1/ρ with negative eigenvalues En ~ -1/n2 similar to that in Hydrogen atoms , The 

problem is that the divergent at ρ =0 Coulomb potential is too far from being realistic for 

channeling case. 
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… For simple cylindrical potential., finite at 0-point, the 

transcendent  equation with special functions for 

eigenvalues can be obtained: 



Channeling of Relativistic Electrons in Crystalls

What has to be calculated and how to do it correctly?

1. Calculating wave functions of 

channeling states

Analytical calculation of wave functions and expressing them in elementary functions 

is possible only for Kronig-Penny potential for planar channeling, In axial channeling 

even for most simple cylindrical potential Ψ-functions are special functions .
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In other potentials only numerical calculations are possible..



Channeling of Relativistic Electrons in Crystalls

What has to be calculated and how to do it correctly?

What is important to calculate?

2. Radiation transitions matrix elements 

and the intensity of electromagnetic 

radiation from channeling electron

,  

The “correct way” is to calculate the matrix 

elements with pre-calculated wave 

functions of channeling states, :what 

obviously can be done only numerically –

means non-transparantly

γ

γ



Channeling of Relativistic Electrons in Crystals

Approaches that produce results without numerical calculations

What is important to calculate?

1. “Co-moving reference system” (CMRS) – the 

reference system, moving along the channeling direction 

with the speed, equal to the longitudinal component of 

the particle speed. 

In CMRS the motion od channeling particle is  

either 2-D (axial case) or 1-D (planar case). 

Due to Doppler effect te averaged potential and the 

transversal energy eigenvalues in CMRS are 

multiplied by the Lorenz-factor  γ = E/mc2 : 

UCMRS= EU0/mc2            En CMRSc= Een /mc2

If UCMRS < EU0/mc2 => E < (mc2)2/U0 ~ several 

GeV  the transversal motion of channeling particle 

is  thus giving the way  to apply  corresponding 

simplifying approximations



In CMRS) it is possible to apply simplifying 

approximations:

In planar 1D case: the Bohr–Sommerfeld 

quantization rule (BSR), defining the eigenvalues of 

transversal energy 

ʃ(2E(En-U(x))1/2dx = hcn/2 (n = 1, 2, 3, 

The integration is done between the two stop-

points of  finite transversal motion. For parabolic 

and rectangular (Kronig-Penny) potentials it gives 

the same results as the accurate calculation with 

Schroedinger equation. We may expect not worse 

match with other potentials also.
For any potential model the total number of channeling states may be 

estimated as  N ~= ʃ(2E|1/2U(x)|1/2dx/hc ~ (2EU0)
1/2l//hc, Here l - the 

effective width and U0 - the effective depth of the potential channel /

Estimation is valid for practically any realistiv potential model.

Channeling of Relativistic Electrons in Crystals

Approaches that produce results without numerical calculations



In CMRS) it is possible to apply simplifying 

approximations:

The eigenvalues of transversal energy for orbiting  

2D-motion in axial case: can be defined by the 

Bohr quantization rule (BQR): the orbital 

momentum of electron Ln = ћn (n = 1, 2, 3, 

In orbital motion parameters in Bohr’s approach are calculated in classical 

mechanics frameworks. In atomic physics the Bohr approach gives correct 

values for the H-atom energy levels. We may expect not worse match with 

other potential models in axial channeling. 

Channeling of Relativistic Electrons in Crystals

Approaches that produce results without numerical calculations



In CMRS) it is possible to apply simplifying 

approximations:

The eigenvalues of transversal energy for orbiting  

2D-motion in axial case: can be defined by the 

Bohr quantization rule (BQR): the orbital 

momentum of electron equals the multiple of Plank 

constant; Ln = ћn (n = 1, 2, 3, 

For any potential model the total maximal number nmax = N corresponds 

to the maximal possible orbital momentum with radius of orbit close to 

maximum r ~ R. It is easy to demonstrate that N is defined by the 

expression, similar to that for the planar channeling: N ~ (2EU0)
1/2R hc, 

practically independent on the particular potential model. 

Channeling of Relativistic Electrons in Crystals

Approaches that produce results without numerical calculations



Channeling of Relativistic Electrons in Crystalls

Examples of analyses

2. The spectrum and intensity of 

electromagnetic radiation)

The spectrum of radiation is defined by the spectrum 

of quantum states of transversal motion Etr with 

regard to the Doppler effect in LabRS. 

ћω = ∆Etr/(θ
2 +m2c4/E2) ~ (E/mc2)2∆Etr

Here θ is the angle of radiation relative to the 

channeling direction. 

The average energy difference between discrete 

levels  of transversal motion ∆Etr can be estimated as 

the ratio of the potential depth U0 and the total 

number of discrete states N. 

In Lab.RS:  ∆Etr ~ U0 / N ~= (hc/R)(U0/2E)1/2,

=> ћω ~ (E/mc2) 3/2 (hc/R)(U0/2mc2)1/2 γ

γ



2. The intensity of electromagnetic 

radiation)

The easiest way to estimate the intensity of 

electromagnetic radiation is to apply the classical 

electrodynamic approach  The intensity P of 

dipole radiation from the moving particle, is 

proportional to its acceleration  w squared:  

P = (e2/2πε0c
3)wi

In classical approach the electron in the realistic 

inverse parabolic potential in CMRS moves with 

average acceleration w = ~ EU0 / m2c2R. The 

same estimation is valid for the centripetal 

acceleration of electron, moving in cone model 

potential in axial channel.
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Channeling of Relativistic Electrons in Crystalls

Examples of analyses



Channeling of Relativistic Electrons in Crystalls

What can be calculated analytically, though less correctly?

2. The intensity of electromagnetic 

radiation)

For both planar and axial channeling cases the 

intensity of radiation thus may be estimated as 

P = ~ (e2/2πε0c
3)(EU0 / m2c2R)i

In typical channeling conditions the effective  

length, where each channeling electron emits at 

least 1 photon, equals ~several mm, 
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Channeling of Relativistic Electrons in Crystalls

What can be calculated analytically, though less correctly?

3. Conversion of electron energy into a 

photon (inverse Compton scattering)
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The crystal axis potential generally can be presented as an expansion 

in series:  U(r) = U0 +U1cos(2πz/d) + Re[Un exp(i2πnz/d)], n = 2, 3, 

U0 Is the averaged channeling potential. The periodical component 

with U1 `U0 in CMRS can be interpreted as electromagnetic wave  or 

flow of photons with wavelength λ = (mc2/E)d, hitting the resting (in 

CMRS) electron. The Lorenz factor shows up in CMRS due to the 

Doppler effect. 

The scattered photon, as we know from Compton effect theory, may 

change the direction of  propagation for inverse practically without 

loosing energy (if λ << mc2).  In LabRS the Doppler effect will act 

again,  making the photon wavelength even shorter λ’ = (mc2/E)2d, 



Channeling of Relativistic Electrons in Crystalls

What can be calculated analytically, though less correctly?

3. Conversion of electron energy into a 

photon (inverse Compton scattering)
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The real photon, produced as the result of the inverse Compton 

scattering of the “as-if photon” (U1cos(2πz/d) 0) may carry away the 

considerable part of the relativistic energy of electron in LabRS:

ћω’ =~ (E/mc2)2(hc/d) ~ (E/mc2)2 keV , 
If  E > GeV the inverse  Compton scattering may result in converting 

of nearly all the electron energy into one photon. 

ћω’ =~ (hc/d) / [(mc2/E)2 + (hc/Ed) ] -> ~ E – m2c3d/h



Classical and Quantum Descriptions of the Channeling Effect 

as Mutually Complementary Approximations

Some conclusions. 
Simplifying analytical approaches, such as 

- using co-moving reference system (CMRS)

- - re-using known results from quantum and atomic physics, like Bohr -

quantization rule or Compton effect analyses 

- - mixing quantum and classical approaches

- - interpreting the crystal lattice potential as a flow of ‘photons’ in CMRS

- etc…

..do really help to obtain substantial analytical results when considering 

the channeling effect aspects, such as  ……

- calculating the values of the the transversal motion energy levels and 

radiation spectra

- Estimating the Intensity of radiation from channeling particles

- Considering the Inverse Compton scattering of crystal lattice ‘photon flow,

- etc, etc…  
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Thank You for Attention!


