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Channels in crystals

Figure 1: (a) The unit cell of the Si crystal. Projection of the crystal
lattice on: (b) [111], (c) [100], and (d) [110] planes, respectively.
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Channels in carbon nanotubes

Figure 2: (a) Unit cell of the chiral single-walled carbon nanotube Ch =
(11, 9); (b) Unit cell of the graphite plane. (c) The normal cross-section
through the bundle of single-walled carbon nanotube.
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Channeling effect

Figure 3: Schematic of the ion channeling process.

Positions of atoms:

rsl = ρs + zlez, s = 1, 2, . . . , N, l = 1, 2, . . . ,M.

Potential energies of ion-solid interaction:

U(r) =
∑
sl

Vsl =
∑
sl

V (r − rsl), V (ρ) =
Z1Z2e

2

4πε0‖ρ‖
Φsc

(
‖ρ‖
asc

)
.

Continuum approximation:

U(r) ≈
∑
s

Us(ρ) =
∑
s

1

d

∫
z

V (r−ρs)dz, Θc =

√
U(ρs + ascez)

E
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Model of crystal rainbow

For high energies channeling is considered as a single small angle
scattering event on the crystal potential.
Momentum approximation

θ(b) = − 1

2E

M∑
s=1

N∑
l=1

∫
z

∇Vsl(b) = − L

2E
∇

M∑
s=1

Us(b)

defines a mapping b→ θ. Differential cross-section

σdiff =
1

|J |
, J(b) =

∂θx
∂x0

∂θy
∂y0
− ∂θx
∂y0

∂θy
∂x0

Rainbow lines in the impact parameter (IP) plane are solutions of
the equation

J(b) = 0.

Their image in the scattered angle (SA) plane are called angular
rainbow lines.
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Model of crystal rainbow

Figure 4: (a) Rainbow line in the TA plane for 7-MeV protons transmitted
through 〈110〉 channel of 150-nm long Si crystal, assuming Lindhard’s
potential. (b) Corresponding experimental angular distribution. Open
circles correspond to angular coordinates of atomic strings.
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Elements of catastrophe theory

Let
F (x1, . . . , xm; c1, . . . , cn),

be a function family depending on state variables x1, . . . , xm and
parameters c1, . . . , cn.
On variations of parameters, family F changes the number and type
of its critical points in the vicinity of which it is equivalent to the
certain polynomial prototype

G(χ1, . . . , χr;α1, . . . , αs),

depending on new state variables χ1, . . . , χr and parameters α1,
. . . , αs such that r ≤ m, s ≤ n and there are equivalences between

∇xF = 0⇔ ∇χG = 0, critical points and

HxF = 0⇔HχG = 0, degenerate critical points.
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Crystal rainbows as catastrophic effect

Figure 5: Rainbow lines in (a) the IP, and (b) SA plane for 10-MeV
protons transmitted through 100-nm long 〈100〉 channels of Au crystal.
(c-e) The unfolding of the function y(θx, θy) for: θx=0.51, 0.65 and 0.79
mrad. Dots represent results of numerical simulation, lines fit by cusp
catastrophe.
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Theory of rainbows in crystals and nanotubes

Solution of the equation of motion

m
d2ρ

dt2
= −∇U(ρ),

define two maps

x = x(b), θx = θx(b);

y = y(b), θy = θy(b).

where θx ≈ vx/vz and θy ≈ vy/vz.

σrdiff =
1

|Jr|
, Jr =

∂x

∂x0

∂y

∂y0
− ∂x

∂y0

∂y

∂x0
;

σθdiff =
1

|Jθ|
, Jθ =

∂θx
∂x0

∂θy
∂y0
− ∂θx
∂y0

∂θy
∂x0

.

Rainbow lines in IP plane are solutions of equations Jr = 0, Jθ = 0.
Their images in the TP or SA planes are spatial and angular rain-
bows, respectively.
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Evolution of crystal rainbows

Figure 6: Experimental angular distribution of 2.0, 1.5, 1.0, and 0.7-MeV
protons transmitted through 55-nm long 〈100〉 channel of Si crystal and
the corresponding rainbow lines in SA plane (red lines).
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Quantum rainbow channeling in nanotubes

Evolution of the positron wave function in the spatial representation
ψs(ρ, t; b) is obtained from solution of the Schrödinger equation

i~
∂

∂t
ψs(ρ, t; b) =

[
− ~2

2m
∇2 + U(ρ)

]
ψs(ρ, t; b).

Evolution of wave function in the angular representation ψa(θ, t; b)
is obtained from ψs via Fourier transformation.
For t = 0, both ψs and ψa are represented by Gaussian wave packed
having standard deviations σr and σθ, respectively.
Spatial and angular distributions of positron beam Yr and Ya, re-
spectively, are:

Yr(ρ, t) =
∑
b

cb|ψr(ρ, t; b)|2, Yθ(θ, t) =
∑
b

cb|ψa(θ, t; b)|2,

parameters cb were chosen in such a manner that initially Yr is
uniform, while Ya is Gaussian distribution having FWHM ∆θ.
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Wave-packet dynamics

Figure 7: The wave-packet of impact parameter b = (0.624, 0) nm at the
exit of 200 nm long chiral SWCNT (14,4) in (a) spatial, and (b) angular
representation, respectively.



Singularities
in ion

channeling

Introduction

Rainbow
model

Theory of
rainbows

Quantum
rainbows

Applications

Young’s explanation of the rainbow effect

Figure 8: (a) Schematics of the interference of the wave-trains traveling
along geometrical rays. The strongest light intensity modulation happens
when wave crests and troughs meet. (b) The light intensity in the vicinity
of the rainbow angle θr.
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Semiclassical theory of the rainbow channeling

Figure 9: (a) The rainbow diagram for 1MeV positron transmitted
through a 200 nm long (14, 4) SWCNT. The initial and final probability
distributions in (b) spatial and (c) angular representation.
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Semiclassical theory of the rainbow channeling

Figure 10: (a) Spatial and (b) angular distributions of 1MeV Gaussian
positron beam, having SD ∆ = 0.1Θc transmitted through 200nm long
(14, 4) SWCNT.
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The positron transmission through nanotube
(11,9)

Figure 11: (a) The slice through probability density of 1-MeV positron
beam. (b) Corresponding slices through individual wave packets.
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Families of Amplitude Squared and Phase
Functions

Figure 12: (a) The family of wave-packet probability density functions;
(b) The corresponding family of wave-packet phase functions.
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Superfocusing effect

Figure 13: (a) Evolution of rainbow lines in the TP plane in the vicinity of
the superfocus for 2-MeV protons in the 〈100〉 channel of Si. (b) Spatial
distribution at the superfocus. (c) Illustration of the proton beam’s
interaction with the S atom’s inner shells inserted in the Si crystal’s
channel.
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Accurate proton-Si potential

Figure 14: (a) Experimental distribution of 2-MeV protons transmitted
through 55-nm long 〈100〉 Si channel. Theoretical distributions were
obtained using: (b) ZBL and (c) Molière’s potential. (d) Proton-Si po-
tentials. (e) Rainbow lines in TA plane.
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Characterization of SWCNT with defects

Figure 15: (a) The part of the unrolled sheet forming an armchair
SWCNT with Stone–Wales defects. Atomic strings created or modi-
fied by the presence of defects are colored red. Angular yields of 1-GeV
protons transmitted through a 200-nm long armchair SWCNT (4, 4), to-
gether with corresponding rainbow lines for defects of (b) type I and; (c)
type II or III. Linear density of the defects in all cases was ldef = 2.005
nm−1.
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Conclusions

Classical rainbow channeling is a complex emergent effect, i.e.,
irreducible to the sum of contributions of individual atomic
strings.

Classical rainbows are manifestations of folds of the equilib-
rium surface.

Classical rainbows are related to the envelope of the trajectory
family.

Quantum rainbows are caused by wave packet coordinate self–
interference and are linked to the singularities of the phase
function family.
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