

Singularities in ion channeling

Introduction

Rainbow model

Theory of rainbows

Quantum rainbows

Applications

M. Ćosić

Laboratory of Physics, Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia

10th of January 2023.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Table of content

Singularities in ion channeling

Introduction

Rainbow model

Theory of rainbows

Quantum rainbows

Applications

1 Introduction

2 Model of crystal rainbow

3 Theory of rainbows in crystals and nanotubes

4 Quantum rainbow channeling in nanotubes

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

5 Some application of rainbow channeling

Channels in crystals

Introduction

Rainbow model

Theory of rainbows

Quantum rainbows

Applications

Figure 1: (a) The unit cell of the Si crystal. Projection of the crystal lattice on: (b) [111], (c) [100], and (d) [110] planes, respectively.

イロト イ理ト イヨト イヨト ヨー のくで

Channels in carbon nanotubes

Singularities in ion channeling

Introduction

Rainbow model

Theory of rainbows

Quantum rainbows

Applications

Figure 2: (a) Unit cell of the chiral single-walled carbon nanotube $C_h = (11,9)$; (b) Unit cell of the graphite plane. (c) The normal cross-section through the bundle of single-walled carbon nanotube.

Channeling effect

Singularities in ion channeling

Introduction

Rainbow model

Theory of rainbows

Quantum rainbows

Applications

Figure 3: Schematic of the ion channeling process.

Positions of atoms:

$$r_{sl} = \rho_s + z_l e_z, \quad s = 1, 2, \dots, N, \quad l = 1, 2, \dots, M.$$

Potential energies of ion-solid interaction:

$$U(\boldsymbol{r}) = \sum_{sl} V_{sl} = \sum_{sl} V(\boldsymbol{r} - \boldsymbol{r}_{sl}), \quad V(\boldsymbol{\rho}) = \frac{Z_1 Z_2 e^2}{4\pi\varepsilon_0 \|\boldsymbol{\rho}\|} \Phi_{\rm sc} \left(\frac{\|\boldsymbol{\rho}\|}{a_{\rm sc}}\right).$$

Continuum approximation:

$$U(\mathbf{r}) \approx \sum_{s} U_{s}(\boldsymbol{\rho}) = \sum_{s} \frac{1}{d} \int_{z} V(\mathbf{r} - \boldsymbol{\rho}_{s}) dz, \quad \Theta_{c} = \sqrt{\frac{U(\boldsymbol{\rho}_{s} + a_{\mathrm{sc}}\boldsymbol{e}_{z})}{E}}$$

Model of crystal rainbow

Singularities in ion channeling

Rainbow model For high energies channeling is considered as a single small angle scattering event on the crystal potential. Momentum approximation

$$oldsymbol{ heta}(oldsymbol{b}) = -rac{1}{2E} \sum_{s=1}^{M} \sum_{l=1}^{N} \int_{z}
abla V_{sl}(oldsymbol{b}) = -rac{L}{2E}
abla \sum_{s=1}^{M} U_{s}(oldsymbol{b})$$

defines a mapping $b \to \theta$. Differential cross-section

$$\sigma_{\text{diff}} = \frac{1}{|J|}, \quad J(\boldsymbol{b}) = \frac{\partial \theta_x}{\partial x_0} \frac{\partial \theta_y}{\partial y_0} - \frac{\partial \theta_x}{\partial y_0} \frac{\partial \theta_y}{\partial x_0}$$

Rainbow lines in the impact parameter (IP) plane are solutions of the equation

$$J(\boldsymbol{b}) = 0.$$

Their image in the scattered angle (SA) plane are called angular rainbow lines.

Model of crystal rainbow

Introduction

Rainbow model

Theory of rainbows

Quantum rainbows

Applications

Figure 4: (a) Rainbow line in the TA plane for 7-MeV protons transmitted through $\langle 110 \rangle$ channel of 150-nm long Si crystal, assuming Lindhard's potential. (b) Corresponding experimental angular distribution. Open circles correspond to angular coordinates of atomic strings.

Elements of catastrophe theory

Singularities in ion channeling

Let

Introduction

Rainbow model

Theory of rainbows

Quantum rainbows

Applications

be a function family depending on state variables x_1, \ldots, x_m and parameters c_1, \ldots, c_n .

 $F(x_1,\ldots,x_m;c_1,\ldots,c_n),$

On variations of parameters, family F changes the number and type of its critical points in the vicinity of which it is equivalent to the certain polynomial prototype

 $G(\chi_1,\ldots,\chi_r;\alpha_1,\ldots,\alpha_s),$

depending on new state variables χ_1, \ldots, χ_r and parameters $\alpha_1, \ldots, \alpha_s$ such that $r \leq m, s \leq n$ and there are equivalences between

 $abla_x F = 0 \Leftrightarrow \nabla_\chi G = 0, \text{ critical points and}$ $\mathbf{H}_x F = 0 \Leftrightarrow \mathbf{H}_\chi G = 0, \text{ degenerate critical points.}$

うして ふゆ く は く み く む く し く し く

Crystal rainbows as catastrophic effect

Figure 5: Rainbow lines in (a) the IP, and (b) SA plane for 10-MeV protons transmitted through 100-nm long $\langle 100 \rangle$ channels of Au crystal. (c-e) The unfolding of the function $y(\theta_x, \theta_y)$ for: $\theta_x=0.51, 0.65$ and 0.79 mrad. Dots represent results of numerical simulation, lines fit by cusp catastrophe.

Theory of rainbows in crystals and nanotubes

Singularities in ion channeling

Introduction

 $\begin{array}{c} {\bf Rainbow} \\ {\bf model} \end{array}$

Theory of rainbows

Quantum rainbows

Applications

$$m\frac{d^2\boldsymbol{\rho}}{dt^2} = -\nabla U(\boldsymbol{\rho}),$$

define two maps

where θ_r

$$\begin{aligned} &x = x(\boldsymbol{b}), \quad \theta_x = \theta_x(\boldsymbol{b}); \\ &y = y(\boldsymbol{b}), \quad \theta_y = \theta_y(\boldsymbol{b}). \end{aligned}$$

$$\approx v_x/v_z \text{ and } \theta_y \approx v_y/v_z.$$

$$\sigma_{\text{diff}}^r = \frac{1}{|J_r|}, \quad J_r = \frac{\partial x}{\partial x_0} \frac{\partial y}{\partial y_0} - \frac{\partial x}{\partial y_0} \frac{\partial y}{\partial x_0}$$

$$\sigma_{\text{diff}}^{\theta} = \frac{1}{|J_{\theta}|}, \quad J_{\theta} = \frac{\partial \theta_x}{\partial x_0} \frac{\partial \theta_y}{\partial y_0} - \frac{\partial \theta_x}{\partial y_0} \frac{\partial \theta_y}{\partial x_0}$$

Rainbow lines in IP plane are solutions of equations $J_r = 0$, $J_{\theta} = 0$. Their images in the TP or SA planes are spatial and angular rainbows, respectively.

Evolution of crystal rainbows

Figure 6: Experimental angular distribution of 2.0, 1.5, 1.0, and 0.7-MeV protons transmitted through 55-nm long $\langle 100 \rangle$ channel of Si crystal and the corresponding rainbow lines in SA plane (red lines).

Quantum rainbow channeling in nanotubes

Singularities in ion channeling

Introduction

Rainbow model

Theory of rainbows

Quantum rainbows

Applications

Evolution of the positron wave function in the spatial representation $\psi_s(\boldsymbol{\rho}, t; \boldsymbol{b})$ is obtained from solution of the Schrödinger equation

$$i\hbar\frac{\partial}{\partial t}\psi_s(\boldsymbol{\rho},t;\boldsymbol{b}) = \left[-\frac{\hbar^2}{2m}\nabla^2 + U(\boldsymbol{\rho})\right]\psi_s(\boldsymbol{\rho},t;\boldsymbol{b}).$$

Evolution of wave function in the angular representation $\psi_a(\boldsymbol{\theta}, t; \boldsymbol{b})$ is obtained from ψ_s via Fourier transformation.

For t = 0, both ψ_s and ψ_a are represented by Gaussian wave packed having standard deviations σ_r and σ_{θ} , respectively.

Spatial and angular distributions of positron beam Y_r and Y_a , respectively, are:

$$Y_r(\boldsymbol{\rho},t) = \sum_{\boldsymbol{b}} c_{\boldsymbol{b}} |\psi_r(\boldsymbol{\rho},t;\boldsymbol{b})|^2, \quad Y_{\boldsymbol{\theta}}(\boldsymbol{\theta},t) = \sum_{\boldsymbol{b}} c_{\boldsymbol{b}} |\psi_a(\boldsymbol{\theta},t;\boldsymbol{b})|^2,$$

parameters c_{b} were chosen in such a manner that initially Y_{r} is uniform, while Y_{a} is Gaussian distribution having FWHM Δ_{θ} .

Wave-packet dynamics

Figure 7: The wave-packet of impact parameter $\mathbf{b} = (0.624, 0)$ nm at the exit of 200 nm long chiral SWCNT (14,4) in (a) spatial, and (b) angular representation, respectively.

Young's explanation of the rainbow effect

Figure 8: (a) Schematics of the interference of the wave-trains traveling along geometrical rays. The strongest light intensity modulation happens when wave crests and troughs meet. (b) The light intensity in the vicinity of the rainbow angle θ_r .

Semiclassical theory of the rainbow channeling

Singularities in ion channeling

Introduction

Rainbow model

Theory of rainbows

Quantum rainbows

Applications

Figure 9: (a) The rainbow diagram for 1MeV positron transmitted through a 200 nm long (14, 4) SWCNT. The initial and final probability distributions in (b) spatial and (c) angular representation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Semiclassical theory of the rainbow channeling

Figure 10: (a) Spatial and (b) angular distributions of 1MeV Gaussian positron beam, having SD $\Delta = 0.1\Theta_c$ transmitted through 200nm long (14, 4) SWCNT.

The positron transmission through nanotube (11,9)

Figure 11: (a) The slice through probability density of 1-MeV positron beam. (b) Corresponding slices through individual wave packets.

イロト 不得 とうせい イロト

ъ

Families of Amplitude Squared and Phase Functions

Figure 12: (a) The family of wave-packet probability density functions; (b) The corresponding family of wave-packet phase functions.

Superfocusing effect

- Introduction
- Rainbow model
- Theory of rainbows
- Quantum rainbows
- Applications

Figure 13: (a) Evolution of rainbow lines in the TP plane in the vicinity of the superfocus for 2-MeV protons in the $\langle 100 \rangle$ channel of Si. (b) Spatial distribution at the superfocus. (c) Illustration of the proton beam's interaction with the S atom's inner shells inserted in the Si crystal's channel.

Accurate proton-Si potential

Singularities in ion channeling

Introduction

Rainbow model

Theory of rainbows

Quantum rainbows

Applications

Figure 14: (a) Experimental distribution of 2-MeV protons transmitted through 55-nm long $\langle 100 \rangle$ Si channel. Theoretical distributions were obtained using: (b) ZBL and (c) Molière's potential. (d) Proton-Si potentials. (e) Rainbow lines in TA plane.

Characterization of SWCNT with defects

Singularities in ion channeling

- Introduction
- $\mathbf{Rainbow}$ model
- Theory of rainbows
- Quantum rainbows
- Applications

Figure 15: (a) The part of the unrolled sheet forming an armchair SWCNT with Stone–Wales defects. Atomic strings created or modified by the presence of defects are colored red. Angular yields of 1-GeV protons transmitted through a 200-nm long armchair SWCNT (4, 4), together with corresponding rainbow lines for defects of (b) type I and; (c) type II or III. Linear density of the defects in all cases was $l_{def} = 2.005$ nm⁻¹.

Conclusions

- Singularities in ion channeling
- Introduction
- Rainbow model
- Theory of rainbows
- Quantum rainbows
- Applications

- Classical rainbow channeling is a complex emergent effect, i.e., irreducible to the sum of contributions of individual atomic strings.
- Classical rainbows are manifestations of folds of the equilibrium surface.
- Classical rainbows are related to the envelope of the trajectory family.
- Quantum rainbows are caused by wave packet coordinate selfinterference and are linked to the singularities of the phase function family.