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In this paper proton channeling through armchair single-walled-carbon-nanotubes (SWCNTs) with
aligned Stone–Wales defects has been investigated. The energy of the proton beam was 1 GeV, while
the lengths of the SWCNTs have been varied from 200 nm up to 1000 nm. The linear density of aligned
defects has been varied in the whole range, from minimally up to maximally possible values. Here are
presented results of a detailed morphological analysis concerning: the formation, evolution and interac-
tion of the nanotube rainbows.
The potential of the SWCNT has been constructed fromMolère’s expression of the Thomas–Fermi’s pro-

ton–carbon interaction-energy, using the approximation of the continuous atomic string. Trajectories of
the channeled protons were obtained by solving the corresponding classical equations of motions.
Distributions of the transmitted protons were obtained by the Monte-Carlo simulation. The shape of
angular distributions has been explained in the framework of the theory of nanotube rainbows. The
aim of this study is also to investigate the applicability of the proton rainbow channeling for the charac-
terization of nanotubes with aligned Stone–Wales defects.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

A carbon nanotube is formed when a number of carbon sheets
are rolled up to form a tube [1,2]. Depending on the number of
carbon sheets they contain, one can distinguish between single-
walled-carbon-nanotubes (SWCNTs) or multi-walled-carbon-
nanotubes (MWCNTs). They exhibit remarkable physical properties.
For instance they possess very large elastic moduli while at the
same time they are very light. This very large flexibility of nan-
otubes allows them to be bent up to p=2 radians without breaking
[3]. Nanotubes can be metallic or semiconducting depending on
the chiral indices. The nanotubes are chemically very stable and
bio-compatible. A good overview of the nanotube properties from
the standpoint of applications can be found in Refs. [3–5].

It is difficult to fabricate nanotubes having a perfect structure.
There exists a number of possible defects such as: vacancies, topo-
logical defects, hybridization defects etc. Their presence alters the
mechanical, thermal electrical, magnetic and hybridization nan-
otube properties. On the other hand, topological defects are needed
in order to join metallic and semiconducting nanotubes, or for the
formation of intramolecular junctions [2]. Also, defects can play an
important role in the functionalization of nanotubes, for instance,
they allow DNA molecules to be attached to nanotubes [6].

The accurate characterization of fabricated nanotubes is a nec-
essary prerequisite for the optimization of the production process,
and also for their widespread application. However, the determina-
tion of the SWNTs structural quality is a difficult task. Standard
methods rely on atomically resolved STM spectroscopy to detect
the interference patterns due to the scattering of electron waves
in the vicinity of a defect. On the other hand, interference patterns
also mask the local atomic structure, thereby making it difficult to
identify the structure of defects [2,7]. Another approach uses the
high lateral resolution of the STM to detect local vibrational modes.
However in this approach the detected signal is not sensitive only
to defects but also to local bends, twists or radial distortions [2,8].
Both mentioned methods rely on the scanning of the individual
nanotubes and are less suitable for the characterization of the mass
produced samples.

One interesting possible application of the nanotubes is in the
field of particle channeling. The charged particle is channeled in
a nanotube if the angle between its initial velocity vector and the
nanotube axis is small. In this case the charged particle undergoes
a series of small angle scattering on the nanotube atoms while the
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angle between its velocity vector and the nanotube axis always
remains small during its motion [9,10]. If additionally there exist
lines in the scattering angle plane along which the differential
cross section is singular, then we speak of the rainbow channeling
effect [11]. It has been suggested that channeling of ions in nan-
otubes can be used: for the generation of the X and gamma-rays
[10,12], for the steering of ion beams [13,14], or for the construc-
tion of radiation and electron sources [5].

The effect of ion channeling through nanotubes still waits for its
full experimental confirmation. Chai et al. were able to produce
nanotubes embedded in a protective carbon fiber coating. The
thickness of the sample was in the range of 0.7–3 lm. They were
able to record an image of 0.3 MeV electron beam transmitted
through a single straight MWCNT using a TEM-micrography tech-
nique [15]. However resolution of the obtained image was not
enough to clearly demonstrate the channeling effect. Zhu et al.
used pores in the anodic aluminum oxide membrane for the
growth of 20 lm long MWCNTs that are 60 nm in diameter. The
diameter and length of the pore were chosen in a way that major-
ity of 2 MeV He+ ions are supposed to be channeled through the
MWCNTs but not through the Al template. This approach enabled
them to measure both the RBS spectrum and the angular distribu-
tion of transmitted ions. However due to the poor graphitized
structure in the process of growth of MWCNTs the obtained results
were not conclusive [16]. In recent years, a number of improve-
ments of the Zhu’s technique for the sample preparation were sug-
gested [17,18].

The rainbow channeling effect in the SWCNT was firstly
described by Petrović et al. [11] in the study of the transmission
of 1 GeV protons through the bundle of a 1 lm long armchair
ð10;10Þ of SWCNTs. In that work, a new method for the character-
ization of the short achiral carbon nanotube based on the rainbow
effect was proposed. Later, Borka et al. [19] showed, for the same
system, that the channeling star effect can be used to identify
the relative orientation of the carbon nanotubes inside the bundle.
It has been shown that rainbow lines are also important for the
channeling of the ions through bent SWCNTs [20]. Ćosić et al. sug-
gested that the quantum rainbow effect of channeled positrons
could be exploited for the characterization of the SWCNTs trans-
verse structure [21]. All mentioned studies were performed assum-
ing that nanotubes are free of defects. Therefore, practically, it
would be necessary to investigate the influence of defects on the
rainbows and their corresponding angular distributions.

The object of this study is a sample containing a large number of
short SWCNTs placed at large mutual distances such that channel-
ing of protons in regions between the nanotubes can be neglected
[20]. For simplicity, we have restricted our analysis to the armchair
SWCNTs having a chiral vector Ch ¼ ð4;4Þ. This kind of samples can
be produced using CVD techniques [22,2]. We assume that the
nanotube defects are of topological Stone–Wales’s type and that
they are aligned along the SWCNTs axis.

The approximation of aligned periodic topological defects is
very common in the existing literature. For example it is used for
the atomistic calculation of elastic properties [23,24], in tight bind-
ing calculations of quantum conductance [25], or in the combined
tight-binding molecular dynamic investigation of structural and
electronic properties, which had shown that the configuration
where defects were aligned along the cylindrical axis of the tube
was the most stable one [26]. It should be noted that usually this
approximation is not explicitly stated, but it is indirectly intro-
duced through the periodic boundary conditions in the axial direc-
tion [23–26].

Here this approximation is introduced not only because of its
simplicity, but rather because in principle there is a way to use
the interaction of the ion beam with the nanotube to produce
defects at will. Similarly as in the case of crystals, the SWCNT
potential possess a strong focusing property, known as superfocus-
ing [20,27]. The longitudinal place of the focus depends on the ion
beam energy, while by sample tilting it is possible to shift the focal
point to the wall of the SWCNTs [20]. If the energy of the beam is
appropriately selected, the tilting of a sample should produce topo-
logical defects only at the place of the focus, which all have the
same mutual orientation with respect to the SWCNT axis. Repeat-
ing the experiment, with appropriately chosen different ion beam
energies, will produce the sample with aligned defects with a pre-
scribed linear density.

In this paper we shall also investigate a possible new experi-
mental technique for the characterization of SWCNTs in the pres-
ence of topological defects, which is based on the rainbow
channeling effect.

2. Theoretical framework

We assume that the sample containing a parallel arrangement
of nanotubes is perfectly aligned with the proton beam. The Des-
cartes coordinate system is introduced in such a manner that its
z axis is aligned with the proton beam. The x and y axes are the ver-
tical and horizontal axes respectively. If not stated otherwise, the
bold letters stand for the vector quantities, r ¼ ðx; y; zÞ.

The object of this detailed study is study of rainbow patterns of
1 GeV protons channeled through an armchair ð4;4Þ of SWCNTs,
having lengths ranging from 200 nm to 1000 nm. The linear den-
sity of Stone–Wales defects was varied from 0 up to the maximal
value, which will be precisely determined later in the text.

2.1. Interaction potential energy

We assume that the potential energy of proton–carbon interac-
tion V is adequately approximated by the Molière’s expression

VðrÞ ¼ Z1Z2e2

4pe0krk
X3
i¼1

ai exp � bi

aTF
krk

� �
; ð1Þ

where Z1; Z2 stand for proton and carbon atomic numbers respec-
tively, e is the elementary charge, e0 is the vacuum dielectric con-
stant, krk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
is the vector norm, a ¼ ð0:1;0:55;0:35Þ

and b ¼ ð6;1:2;0:3Þ are Molière’s universal parameters,
aTF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9p2=ð128Z2Þ3

p
a0 is the Thomas–Fermi’s screening radius

while a0 ¼ 4pe0�h2
=ðmee2Þ is the Bohr’s radius (�h being Planck’s con-

stant, and me is the electron’s rest mass) [28,29]. Since the channel-
ing process involves only small angle scattering it is customary to
assume that the impulse approximation applies to every scattering
event [30]. This approximation justifies the treatment of the longi-
tudinal linear momentum pz as being a constant of the motion. The
protons total transverse linear momentum transfer per scattering
event dp ¼ ðdpx; dpyÞ is then given by the expression

dp ¼ �dtr1
L

Z L

0
VðrÞdz; ð2Þ

where dt is the flight time while L is the nanotube length [30]. Since
L � aTF , the limits of the integral can be safely extended from �1 to
1. Adding contributions from all the scatterers and treating each
individual contribution as being infinitesimal, we arrive at the effec-
tive equations of motion

d
dt

p � �rUntðqÞ ¼ �r
X
j

Ujðq� qjÞ; ð3Þ

where p ¼ ðpx;pyÞ is the transverse linear momentum at time t;Unt

is the potential of the nanotube, which is the sum of the potentials
of all individual atomic strings Uj, index j counts atomic strings
which are formed from Nj atoms having the same transverse
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positions qj ¼ ðxj; yjÞ;q ¼ ðx; yÞ, and t is time. The potential Uj is
given by the expression

UjðqÞ ¼ 1
L

XNj

k

Z 1

�1
Vðq; z� zkÞdz ¼ Z1Z2e2

2peo
Nj

L

X
i

aiK0
bi

aTF
kqk

� �
;

ð4Þ
where the index k counts the longitudinal positions zk of atoms
within an atomic string, while K0 stands for the modified Bessel
function of the second kind and 0-th order. The quantity Nj=L
(which will be denoted by kj) represents the linear density of atoms
of the j-th atomic string. It is interesting to notice that according to
Eq. (4), the potential Ua

j is directly proportional to the linear density
kj, while the actual longitudinal positions zk, are irrelevant.

The thermal effects can be introduced by averaging the atomic
potential V over the thermally induced displacements of the nan-
otube atoms [31]. Since the amplitude of the thermal vibration is
small, a useful approximation of the potential can be obtained by
expanding the potential Vðq� q0Þ in a Taylor’s series up to the sec-
ond order around the equilibrium position q, averaging it over q0,
and by using the obtained potential Vth for the construction of the
full potential of the nanotube [32]. In that case, the potential of the
nanotube is given by the following analytical expression [33,34]

Uth
ntðqÞ ¼

Z1Z2e2

2pe0

X
j

X3
i¼1
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i r2
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2a2TFai
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aikjK0

bi

aTF
kq� qjk

� �
; ð5Þ

where rth ¼ 0:0053 nm is the standard deviation of the distribution
of the nanotube atoms displacements [35].

This approximation is accurate as long as the longitudinal cor-
relations of atomic positions can be neglected [30,32]. For this, it
is necessary that the closest proton distance from the arbitrary
atomic string j be not smaller than aTF [30]. Consequently, the max-
imal proton scattering angle Hc , which is also called the ‘‘critical
channeling angle”, is given by the expression [9,30]

Hc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uth

j ðaTFÞ
Ek

s
; ð6Þ

where Ek is the initial kinetic energy of protons. All protons entering
the atomic strings screening radius or having a scattering angle lar-
ger than the critical angle are considered as dechanneled, and are
thus eliminated from further calculations.

The accuracy of the obtained ‘‘continuous” approximation of the
potential is experimentally very well tested [9,29,36]. Moreover its
validity has been demonstrated for atomic strings composed of
approximately 100 atoms [37].

2.2. Theory of nanotube rainbows

The dynamics of the proton beam can be obtained by solving
the Newtons equation of motion:

d
dt

p ¼ �rUth
nmðqÞ: ð7Þ

Proton impact parameters q0 ¼ ðx0; y0Þ — their initial positions
— should be uniformly distributed in the channel region, while
their initial linear momenta p0 ¼ ðpx0; py0Þ should be taken ran-
domly in the linear momentum distribution of the proton beam.
Since in channeling a proton undergoes a series of small angle scat-
tering, the total deflection angle h ¼ ðhx; hyÞ is small and given by
expressions: hx � px=pz, and hy � py=pz respectively.

Let us introduce the dimensionless reduced nanotube length
K ¼ dt=s defined as the ratio of the protons flight time dt, over
its period of oscillations s, for protons moving in the vicinity of
the nanotube axis. Since the motion in the direction of the
nanotube axis is free, the flight time is equal to
dt ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=ð2mrEkÞ
p

L, where mr is the proton relativistic mass, and L
is the nanotube’s length. The period of oscillations can be found
directly from the Taylor’s expansion of the proton-nanotube poten-
tial up to the second order in the vicinity of the nanotube axis. It is

equal to s ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffi
mr=j

p
, where j ¼ 1

2MU
th
ntjq!0 is the coefficient in

front of the x2 þ y2 term in the Taylor’s expansion of the interaction
potential (M ¼ @2

x þ @2
y). The most convenient expression of the

parameter K, suitable for our analysis, is given by the following
equation:

K ¼ dt
s
¼ 1

2p

ffiffiffiffiffi
j
Ek

r
L: ð8Þ

It is obvious that when K is small the interaction of protons
with a nanotube is also small. It has been shown that regarding
the proton dynamics, nanotubes can be classified according to
the value of the parameter K [34,38,39]. Namely, if K < 0:25 nan-
otubes are considered to be very short, meaning that the energy
loss and the fluctuations of the proton scattering angle can be
neglected [38,40].

Solutions of Eq. (7) have the form

h ¼ hðK;q0;p0Þ; ð9Þ
where q0, and p0 are considered as parameters. If the incoming pro-
ton beam is parallel (p0 ¼ 0) and the length of the nanotube L (or K)
is fixed, then the mapping described in (9) reduces to a mapping of
the impact parameter plane to the transmitted angle plane q0 ! h.
The differential cross-section rdiff in this case reduces to the
expression:

rdiff ðq0;KÞ ¼
dx0dy0
dhxdhy

¼ 1
jJhðq0;KÞj

; ð10Þ

where Jh is the determinant of the Jacobian matrix corresponding to
the mapping q0 ! h, defined by the equation:

Jhðq0;KÞ ¼
@hx
@x0

@hy
@y0

� @hx
@y0

@hy
@x0

: ð11Þ

If the mapping q0 ! h has a critical point (Jh ¼ 0), then rdiff is singu-
lar. These singularities form lines in the impact parameter plane,
and in the transmitted angle plane. They are also called rainbow
lines [32,38].

The observable angular proton yield Yðh;KÞ per solid angle
DhxDhy around the angle h is obtained from Eq. (9) by counting
the number of protons in the solid angle DhxDhy. The rainbow line
marks the boundary between a region of higher and lower proton
yields. The regions of high yields are called the bright side of the
rainbow, while regions of the lower yields are known as the dark
side of the rainbow. On the rainbow line the resulting yield
Yðh;KÞ is large, which is a consequence of the strong focusing
effect, since DhxDhy tends to become zero, see Eq. (10) [32,38]. It
has been shown that rainbow patterns can explain the shape and
the evolution of such angular distributions [32,34,38,].
3. Results and discussion

The chiral and translation vectors of an arbitrary armchair
SWCNT are Ch ¼ ðm;mÞ and T ¼ ð1;�1Þ respectively [2]. The rect-
angle defined by these two vectors is the elementary cell of the
perfect SWCNT [2]. There are 2m hexagons inside this elementary
cell each containing the two carbon atoms [2], each of them being
the starting point of a single atomic string formed together with its
translational equivalents [41]. The linear densities of the perfect
atomic strings are kj ¼ 1=kTk ¼ 4:009 nm�1 (j ¼ 1; . . . ;4m).
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Fig. 1 shows the unrolled part of the arbitrary armchair SWCNT.
Each carbon atom is covalently bound to its three nearest neigh-
bors that are forming the equilateral triangle. If all carbon atoms
have their bonds in the same directions then the nanotube has a
perfect structure. However, if any of the bonds is rotated by 90�,
one Stone–Wales defect is formed [2]. This rotation transforms 4
hexagons to a pentagon-heptagon pair, as it can be clearly seen
in Fig. 1. Dashed lines show the original positions of atoms and
bonds.

When the defects are aligned, one can define the linear density
of defects ldef . Depending on which bond rotates one can distin-
guish 3 possible types. They are denoted as type I, II, and III respec-
tively, and are shown in Fig. 1 [23]. If the mean distances between
defects are denoted by dI; dII; dIII then the corresponding linear
densities of defects are ldef ¼ 1=dI; ldef ¼ 1=dII , and ldef ¼ 1=dIII

respectively. According to the geometry of the nanotube
dI ¼ nIkTk; dII ¼ nIIkTk, and dIII ¼ nIIIkTk, where nI;nII and nIII are
integers. The linear density of defects in all three cases can vary

from lmin
def ¼ 0 nm�1 (no defects) up to lmax

def ¼ 1=ð2kTkÞ ¼ 2:005 nm�1

(all pentagon-heptagon pairs are touching each other).
Fig. 2 shows the potential of the armchair SWCNT Ch ¼ ð4;4Þ for

the perfect and defective structures. Their radius is R ¼ 0:275 nm,
while the number of hexagons in na elementary cell is equal to
8, for the perfect and the defective cases respectively. For simplic-
ity, it has been assumed that the nanotubes are oriented in such a
way that the first hexagon is located at the polar radius R and polar
angle 0, while the defective atomic strings are located within the
first hexagon. The solid circles of radius aTF ¼ 0:026 nm centered
at atomic strings are marking the inaccessible region for the chan-
neled proton. The blue circles belong to the perfect, while the red
ones belong to the defective atomic strings.

Fig. 2a shows the contour lines of a SWCNT having the perfect
structure. All atomic strings in this case are identical having a
linear density of atoms equal to k ¼ 4:009 nm�1.
(b)(a) (c)

Fig. 1. The part of the unrolled carbon sheet forming the armchair nanotube with
Stone–Wales defects. Original positions of atoms are shown with a dashed line. The
vectors Ch and T are the chiral and translation vectors of the nanotube respectively.
Parts designated by (a), (b), and (c) show three possible types of topological defects,
where dI; dII , and dIII are the mean distances between the defects, respectively.
Atoms belonging to the unmodified atomic strings are colored in blue, while atoms
of atomic strings induced or modified by the presence of defects are colored in red.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
Fig. 2b shows the potential of type I having a linear density of
defects ldef ¼ 2:005 nm�1. The rotation of the C–C bonds in this case
creates the new atomic string (located at polar radius R and polar
angle 0) and modifies the nearest two strings. From the geometry
of the nanotube it is clear that the corresponding atomic linear
densities are k ¼ 2=ðnIkTkÞ and k ¼ ðnI � 1Þ=ðnIkTkÞ respectively.
When ldef is very small (nI ! 1) it is clear that the former linear
density tends to k ¼ 0 while the latter tends to become
k ¼ 1=kTk, that is the defective nanotube will behave like
there are no defects, as it is expected. In this concrete example
(nI ¼ 2) the linear density of the new atomic string is
k ¼ 1=kTk ¼ 4:009 nm�1, while the linear density of modified
atomic strings is given by k ¼ 1=ð2kTkÞ ¼ 2:005 nm�1.

As it is obvious from Fig. 1, topological defects of type II and III
would lead to the identical potential in the continuous approxima-
tion, which is given on the Fig. 2c. The linear density of defects is
the same as in the previous case ldef ¼ 2:005 nm�1. In this case
the rotation of the C–C bond creates 2 new atomic strings of linear
atomic densities k ¼ 1=ðnII;IIIkTkÞ and changes the linear density of
the nearest two atomic strings to k ¼ ðnII;III � 1Þ=ðnII;IIIkTkÞ. Again
for nII;III ! 1 the potential of the defective SWCNT tends to the
potential of the perfect SWCNT (notice this potential in Fig. 2c
becomes the potential in Fig. 2a, rotated by an angle p=8 rad).
For the defective SWCNT from Fig. 2c the nII;III ¼ 2, and all linear
densities of defective atomic strings are the same and equal to
k ¼ 1=ð2kTkÞ ¼ 2:005 nm�1.

Fig. 3 shows the calculated proton angular yields YðhÞ (given in
a logarithmic scale) for potentials shown in Fig. 2 respectively. The
corresponding rainbow lines, calculated according to Eq. (11), are
also shown. The initial kinetic energy of protons were Ek ¼ 1
GeV, while the length of the SWCNT was L ¼ 200 nm. The corre-
sponding reduced length and critical angle are K ¼ 0:038, and
Hc ¼ 0:255 mrad. Since K is much smaller than 0.25, all nanotubes
can be considered as very short. It has been assumed that the initial
proton beam has a small angular divergence, much smaller than
the critical angle, so it can be considered as practically parallel.
This is achievable for example by the micro-beam techniques [42].

The rainbow lines mark the boundary between the regions of
higher and lower proton yields. They represent the ”skeletons” of
the obtained angular distributions and predominantly determine
the shape of the obtained distributions [36,37]. Rainbow patterns
consist of two parts: the inner part composed of a cusped closed
curve together with a number of small cusped isosceles triangles,
and the outer part composed of a number of large cusped isosceles
triangles. The outer part of the pattern is formed from protons hav-
ing impact parameters close to the atomic string, while the inner
part is formed by protons scattering far from atomic strings.

Fig. 3a shows the rainbow lines of the perfect SWCNT which
clearly reflect the C8v symmetry of the potential (see Fig. 2a). The
inner part is formed from a cusped regular octagon and isosceles
triangles whose axes are orthogonal to the octagon sides. The outer
part of the rainbow pattern is formed by 8 pairs of triangles ori-
ented along the mirror symmetry axes. All triangles forming pairs
are mutually shifted along the direction of the symmetry axes.
Inner and outer triangles are shifted by an angle equal to p=8 rad.

In the presence of defects, the C8v symmetry of the potential is
reduced to the Cs group. The mirror symmetry axis of this group
coincides with the y axis (see Fig. 2b and c). This is clear from
the rainbow patterns shown in Fig. 3b and c. The mirror symmetry
axis is now aligned to the hy axis.

The defects of the first type change the pattern of the perfect
nanotube in the following way (see Fig. 3b). The small triangle of
the inner pattern at an angle of 0� is no longer visible, while each
of the triangle pairs of the outer pattern at angles of p=8 rad
�p=8 rad respectively, is now replaced by a triple triangle. There
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Fig. 2. Contour lines of the armchair SWCNT Ch ¼ ð4;4Þ potential: (a) of the perfect structure; (b) with type I defects and; (c) with type II or III defects. In all cases the linear
density of the defects is equal to ldef ¼ 1=dII;III ¼ 2:005 nm�1. Values of the potential are expressed in eV. Solid circles of radius aTF are indicating the locations of atomic strings.
The blue circles are denoting the unmodified atomic strings while reds circles are denoting the new and modified atomic strings due to the presence of the defects. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(a) (b) (c)

Fig. 3. Angular yields of Ek ¼ 1GeV protons transmitted through a L ¼ 200 nm long SWCNT Ch ¼ ð4;4Þ together with rainbow lines corresponding to the potentials from Fig. 2.
The yields are given in logarithmic scale. The saturation of the red color is proportional to the proton yield. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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is one additional small triangle at the angle of p rad. The outer tri-
angles pairs at angles of 7p=8 rad and 9p=8 rad have now lost one
of their triangles. It seems that they have been combined with the
left part of the inner octagon to form the decagon. The rest of the
rainbow patterns are essentially unchanged.

The rainbow pattern of a SWCNT having defects of the second or
third type is given in Fig. 3c. Since the potentials in these two cases
are identical, the resulting rainbow patterns are indistinguishable.
It should be noted that because of the adopted orientation of
potentials given in Fig. 2a and c, the corresponding rainbow pat-
terns are shifted by an angle p=8 rad. The one triangle from the
outer pair at angle 0 from Fig. 2c (this is the triangle at p=8 in
Fig. 2a), is now closer to the cusp of the octagon. Triangles of the
inner pattern at the angles of �p=8 rad and p=8 rad (these are tri-
angles at 0 and 2p=8 in Fig. 2a)are slightly shifteds toward the
outer pattern. The defective nanotube has lost one triangle from
an outer triangle pair at angle p rad (which is the triangle pair at
angle 9p=8 rad in Fig. 2a). It seems as that it has interacted with
the octagon cusp at angle p rad (9p=8 rad in Fig. 2a) forming the
cusped nonagon. The rest of the rainbow patterns are essentially
unchanged.
It is interesting to note that the difference between the rainbow
patterns of the perfect and defective nanotubes is also present for
the other lengths of SWCNTs besides those presented in Fig. 3.
Fig. 4a–c show the rainbow lines for the nanotube length of
L ¼ 600 nm (K ¼ 0:114) corresponding to Fig. 2a–c, respectively.
It is clear that one can recognize the inner and outer parts of the
rainbow patterns which are observed in Fig. 3. In comparison,
the rainbow patterns are scaling up in size, coming closer to each
other, while becoming more elaborate. Moreover, both patterns
contain new rainbow lines, but they have essentially the same
form. Fig. 4)d–f show rainbow patterns for the nanotube length
of L ¼ 1000 nm (K ¼ 0:190), as in Fig. 2a–c, respectively. Inner
and outer parts of rainbow patterns are now overlapping. Their
mutual interaction form a very complex pattern. However, the
rainbow pattern in Fig. 4d still exhibits a C8v symmetry, while pat-
terns on the Fig. 4e and f exhibit a Cs symmetry. The characteristic
new inner triangle at the angle of p rad (see Fig. 4e) and the shift of
inner triangles at the angles of �p=8 rad and p=8 rad (see Fig. 4f)
observed in Fig. 3b and c respectively are still clearly visible.

Further, the dependence of the rainbow patterns on the linear
density of defects has been investigated. Fig. 5 shows the
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Fig. 4. The evolution of rainbow lines with length of Ek ¼ 1GeV protons transmitted through a SWCNT Ch ¼ ð4;4Þ. Subfigures (a), (d) are showing rainbow lines for the perfect
SWCNT; (b), (e) for the SWCNT with defects of the first type; while (c) and (e) for the SWCNT with defects of the second type. The linear density of defects is the same in all
cases and equal to ldef ¼ 2:005nm�1.

(a) (b) (c)

(d) (e) (f)

Fig. 5. The evolution of the rainbow lines of Ek ¼ 1GeV protons transmitted through a L ¼ 200nm long SWCNT Ch ¼ ð4;4Þwith different linear densities of defects. Subfigures
(a), (b) and (c) are showing rainbow lines for defects of the first type while subfigures (d), (e), and (f) show rainbow lines for defects of the second type.
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dependence of rainbow patterns of the defective SWCNTs on ldef .
For simplicity, the length of the nanotube was fixed to
L ¼ 200 nm. Fig. 5a–c show the rainbow patterns when the
SWCNTs have defects of the first type and linear densities equal
to ldef ¼ 0:200 nm�1; ldef ¼ 0:334 nm�1 and ldef ¼ 1:002 nm�1,
respectively, while Fig. 5d–f are showing the rainbow patterns
for the defects of the second or third type and the same linear den-
sities as in 5a, b, and c, respectively. The parts of the lines that are
missing in Fig. 5a and b originate from protons entering the screen-
ing radius of a atomic string. According to the presented model
these particles need to be excluded. Taking into account Fig. 3a–c
the evolution of the rainbow patterns in the full scale of parameter

ldef , from lmin
def ¼ 0 nm�1 (the minimal value possible), up to

lmax
def ¼ 2:005 nm�1 (the maximal value possible) can be observed.

The rainbow pattern in the presence of defects of type I evolves
in the following way. When there are no defects the rainbow lines
are given in Fig. 3a. An increase in the linear density of defects ldef
causes the inner triangle at the angle of 0 rad to move toward the
outer part of the pattern (see Figs. 3a and 5a and b). This triangle
also grows in size. When the linear density of the defects becomes
larger than ldef ¼ 0:334 nm�1 this triangle splits into two smaller
triangles (see Fig. 5b and c). Afterwards, they continue to move
towards the outer triangle pairs at angles of �p=8 rad and p=8
rad, respectively, where they will reach their final position (see
Figs. 5c and 3b). Defects also cause each triangle from the outer
pair at angles of 7=8p rad and 9=8p rad to move towards the octa-
gon cusps at the same angles. Additionally, the mentioned cusps
starts to move also towards the triangles (see Figs. 3a and 5a and
b). For a linear density of defects greater than ldef ¼ 0:334 nm�1,
the triangles start to touch the cusps of the octagon and form a
very complicated cusped polygon (see Fig. 5b and c). For linear
densities of defects larger than ldef ¼ 1:002 nm�1 this line will split
into the triangle at an angle of p rad of the cusped decagon (see
Fig. 3b).

When the SWCNTs have defects of type II or III the rainbow pat-
terns evolve as follows. The inner triangles at angles of �p=8 rad
and p=8 rad, which correspond to the angles of 0 and 2p=8 rad,
as shown in Fig. 3a start to move toward the outer part of the pat-
tern getting their final positions shown in Figs. 5d–f and 3c). One
triangle from the outer triangle pair at the angle of p rad starts
to extend towards the cusp of the octagon at the same angle, while
the cusp starts to move towards the triangle (see Fig. 5d and e).
This corresponds to the triangle and the cusp at the angle of
9p=8 rad, as shown in Fig. 3a. When the linear density is larger
than ldef ¼ 0:334 nm�1, the triangle and the cusp start to touch,
combining together to form a complicated cusped nonagon (see
Figs. 5e, f and 3c). The triangle from the outer pair at 0 degrees
(corresponding to an angle of p=8 rad on Fig. 3a) also deforms
and moves closer to the octagons cusp at the same angle.

It is interesting to note that rainbow patterns evolve in a com-
pletely different way depending on the type of the topological
defects. They correspond to two different ways in which the sym-
metry of group C8v decomposes into the group Cs. This kind of
reduction occurs if one looks at the symmetry group of the general
point in the interior of the regular octagon, when it moves from the
center of the polygon along the diagonal or the apothem. Following
this analogy, the defects of the first type have an effect on the evo-
lution as a kind of motion of the point along the apothem, while
defects of the second or third type have an effect on the evolution
as a kind of motion of the point along the diagonal. This fact is evi-
dent from Fig. 2, since defects of the first type induce the difference
of the potential along the apothem (see Fig. 2b), while defects of
the second and third cases induce the difference along the diagonal
(see Fig. 2c). This is also clear from the corresponding rainbow pat-
terns (see Fig. 3a and b).

The analysis up to now shows that it is possible to distinguish
between different defective SWCNTs based on the corresponding
rainbow patterns. This opens the possibility to use the rainbow
channeling in order to characterize SWCNTs with topological
defects.

From the experimental point of view, one can record the angu-
lar yield of samples with defective SWCNTs, Yðhx; hyÞ, and compare

it to the reference sample yield Yref ðhx; hyÞ from the perfect
SWCNTs. Let us assume that angular yields are measured with a
resolution of N �M points, where N and M stand for the number
of points in hx and hy directions respectively. In this case the mea-

sured yields are represented by matrices Yij and Yref
ij

(i ¼ 1; . . . ;N; j ¼ 1; . . . ;M). To quantify the difference between the
two distributions it is convenient to introduce the parameter D,
which is defined as the root-mean-squared difference of two
matrices

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NM

XN
i¼1

XM
j¼1

ðYij � Yref
ij Þ2

vuut : ð12Þ

This parameter is widely used in the digital signal processing where
it is known as the RMS contrast of two images [43].

Fig. 6a shows the calculated dependence of the parameter D on
the linear density ldef for defects of type I, while Fig. 6b gives the
same dependence for the defects of type II or III and for the nan-
otube length equal to 200;400;600;800 and 1000 nm. All the
obtained graphs have the following form. For the small and large
values of the linear density ldef , the parameter D is a linear function,
while for intermediate values, the parameter D exhibits a nonlinear
change. This behavior can be explained by the fact that when ldef is
small, the rainbow patterns of the defective SWCNTs are only
slightly different from the rainbow patterns of the perfect SWCNT.
They have just started to deform, but there is no significant change
in their shape. This also means that the difference between the
angular proton yields is small. On the other side, when the rainbow
lines start to interact, the shape of the rainbow lines changes sig-
nificantly. This means that the bright and dark sides of rainbows
are also redefined, leading to a significant change of yields. For
example, for a SWCNT with defects of type I and a length of
200 nm, this interval of ldef is ½0:334;1:002� nm�1 (see Fig. 5). For
larger values of ldef the change of the rainbow lines is small, due
to the absence of their interaction. The measured yield tends
toward its limiting values, while at the same time it essentially
retains its shape, and the rate of its change is slow. This means that
D changes linearly with ldef .

It should be noted that the information contained in the calibra-
tion curves given in Fig. 6a and b is adequate for the determination
of the linear density of defects. It is obvious from Fig. 6 that for any
fixed nanotube length and for some measured values of D there are
two possible values of ldef . To resolve this apparent ambiguity, one
should bear in mind that the proton dynamic depends on the val-
ues of the parameter K. According to Eq. (8), if the proton energy is
increased, the SWCNT acts as if it has been shortened, and vice
versa, if the proton energy is reduced the nanotube becomes effec-
tively longer. In this sense it is possible to make a compromise
between the proton speed and the nanotube length. If an experi-
mentalist performs new measurements of the parameter D but at
a different beam energy, then the nanotube acts as if it had a dif-
ferent length. This means that the two previously identified possi-
ble values of ldef should move along vertical lines in Fig. 6 from the



(a) (b)

Fig. 6. The measured yield distortions (root-mean-squared differences) of Ek ¼ 1 GeV protons transmitted through a SWCNT Ch ¼ ð4;4Þ with different linear densities of
defects: (a) for defects of the first type; (b) and defects of the second or third type.
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curve corresponding to the actual nanotube length to the curve
corresponding to the new effective length. It is obvious that such
an induced change of the parameter D is different for different val-
ues of ldef .

The experimental procedure for the determination of the ldef
consists of two steps. In the first step, measurements of the param-
eter D should be performed, and possible values of the ldef should
be identified. The type of defects should be easily identified from
the shape of the distribution. If one identifies more than one value
of ldef then, in the second step, new measurements at a different
beam energy should be performed and the new potential values
for ldef identified. The correct value of the linear density of the
defects is the one which does not change by performing this addi-
tional measurement.
4. Conclusions

We have performed a detailed morphological analysis of the
rainbow patterns and the corresponding angular distributions of
protons channeled through the armchair SWCNT Ch ¼ ð4;4Þ, when
topological Stone–Wales defects are aligned. It has been shown
that three possible orientations of the rotated C–C bond, that are
labeled as type I, II and III in principle, give three different poten-
tials of the atomic strings. However, it has been shown that poten-
tials of the armchair SWCNT with type I and II defects are different,
while potentials of the SWCNT with type II and type III defects can-
not be distinguished. This difference then induces the change of
the symmetry of the angular rainbow patterns and angular yields.
The C8v symmetry of the perfect SWCNT rainbow patterns are then
reduced to the Cs symmetry. The symmetry reduction happened in
two different ways which are of the distinctive feature for I and II-
III types of defects. This allows for the recognition of the defect
type on the basis of the corresponding shape of the rainbow pat-
tern. We have also demonstrated that this observed difference in
the rainbow patterns exists for different SWCNT lengths and linear
densities of defects. The analysis shows that it is possible to use the
RMS difference between the angular yields of perfect and defective
SWCNTs in order to determine the linear densities of the defects.
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[27] N. Nešković, S. Petrović, D. Borka, Nucl. Instrum. Methods Phys. Res. Sect. B 267

(2009) 2616.
[28] G. Molière, Z. Naturforsch. 2a (1947) 133.

http://refhub.elsevier.com/S0168-583X(15)01201-X/h0005
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0010
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0010
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0010
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0015
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0020
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0025
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0030
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0030
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0035
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0040
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0040
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0045
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0050
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0055
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0055
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0060
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0065
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0070
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0075
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0080
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0080
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0080
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0080
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0080
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0080
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0085
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0090
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0090
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0095
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0100
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0100
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0105
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0105
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0110
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0115
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0120
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0125
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0130
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0135
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0135
http://refhub.elsevier.com/S0168-583X(15)01201-X/h0140
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