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Quantum rainbow channeling of positrons in very short carbon nanotubes
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This is a theoretical study of transmission of positrons of kinetic energies of 1 and 10 MeV through very
short (11,9) single-wall carbon nanotubes of lengths of 200 and 560 nm, respectively. The needed continuum
interaction potential of the positron and nanotube is obtained starting from the Molière’s approximation of the
Thomas-Fermi interaction potential of a positron and a nanotube atom. We calculate the classical and quantum
angular distributions of transmitted positrons. In the classical calculations, the approach is via the equations of
motion, and in the quantum calculations, the time-dependent Schrödinger equation is solved. The solutions of
these equations are obtained numerically. In the quantum calculations, the initial beam is taken to be an ensemble
of noninteracting Gaussian wave packets. The angular distributions are generated using the computer simulation
method. Our analysis is concentrated on the rainbow effect, which is clearly seen in the angular distributions.
The obtained classical and quantum rainbows are analyzed in detail and compared with each other.
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I. INTRODUCTION

The channeling of a charged particle in a crystal is its
motion through the axial or planar crystal channels [1–3].
In this process, the angle between the particle momentum
vector and the channel axis or the median plane remains small.
When the rainbow lines appear in the transmission angle plane,
determining the angular distribution of transmitted particles,
the process is called rainbow channeling [4–7]. When, in
addition, the values of the particle mass and the kinetic
energy are such that the channeled particles exhibit their wave
properties, the process is called quantum rainbow channeling.

Andersen et al. [8] registered the quantum behavior of
positrons of kinetic energy of 1 MeV that were channeled
in a gold crystal and then backscattered from it. A similar
experiment with the same result was performed with 1.2-MeV
positrons and a silicon crystal by Pedersen et al. [9]. In both
measurements, the positrons moved along the planar crystal
channels. Haakenaasen et al. [10] observed the pronounced
quantum behavior of 1-MeV positrons transmitted through
the axial as well as the planar channels of a silicon crystal.
All those measurements were analyzed using the dynamical
diffraction theory, which is based on the expansion of the
positron wave function in Bloch wave functions [11].

Carbon nanotubes were discovered by Iijima [12]. One
can describe them as sheets of carbon atoms rolled up into
cylinders with the atoms lying at the hexagonal crystal lattice
sites. The nanotube diameters are of the order of a nanometer
and their lengths can be more than 100 μm. Nanotubes can be
single-wall or multiwall structures, depending on the number
of cylinders they include. They have remarkable physical
properties [13]. As a result, they have begun to play an
important role in the field of nanotechnology [14]. A nanotube
is achiral or chiral. In the former case, it is composed of atomic
strings parallel to its axis, and in the latter case, it consists of
atomic strings that spiral around the axis.

Soon after the discovery of carbon nanotubes, Klimov and
Letokhov [15] predicted that they could be used to channel
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positively charged particles. After that, a number of theoretical
groups studied ion channeling in nanotubes. A list of their most
important publications is given in Ref. [16]. The main objective
of most of those studies was to investigate the possibility of
guiding ion beams with nantoubes. The experimental study of
ion channeling in nanotubes is still in the initial phase [17,18].

It is well known that the rainbow effect occurs when
sunlight scatters from water droplets [19,20]. The study of it
began in ancient times. Such an effect also occurs and plays an
important role in nucleus-nucleus collisions [21,22], atom or
ion collisions with atoms or molecules [23], electron-molecule
collisions [24], atom, ion, or electron scattering from crystal
surfaces [25–28], and ion channeling in crystals [4–7].

Besides, Petrović et al. [29] showed that the rainbow effect
could also occur in ion channeling in carbon nanotubes. They
demonstrated that the theory of crystal rainbows [6] provided
the full explanation of the obtained angular distributions of
transmitted ions. In that study, the projectiles were 1-GeV
protons and the target was a 1-μm-long bundle of (10,10)
single-wall carbon nanotubes (SWCNs). Those nanotubes
were very short. The same group has also explored the rainbow
effect in proton channeling in short and long (11,9) SWCNs
[30,31].

Here, we present a study of the transmission of 1- and
10-MeV positrons through very short (11,9) SWCNs. It in-
cludes classical and quantum calculations and is concentrated
on the rainbow effect.

II. THEORETICAL FRAMEWORK

The system we consider is a positron channeled in a (11,9)
SWCN. As it has been said above, the values of positron kinetic
energy are E = 1 and 10 MeV. In the former case, the value
of the nanotube length is L = 200 nm. The corresponding
value of the reduced nanotube length is � = 0.12. In the latter
case, L = 560 nm. This value has been chosen to obtain the
same value of � as in the former case (0.12). The reduced
nanotube length is defined as

� = fh

mL

p0
, (1)
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where m is the positron relativistic mass, p0 is the magnitude
of initial positron momentum vector, and fh is the frequency of
positron motion close to the nanotube axis [5]. The fact that the
value of � in question is below 0.25 means that both nanotubes
are very short [6]. We take that the z axis of the reference frame,
being the longitudinal axis, coincides with the nanotube axis
and that its origin lies in the nanotube entrance plane. The
x and y axes, being the transverse axes, are the vertical and
horizontal axes, respectively.

A. Interaction potentials

In this study, the interaction of the positron and a
nanotube atom is described by Moliere’s approximation of
the Thomas-Fermi interaction potential [32]. The needed
continuum interaction potential of the positron and nanotube
is obtained in three steps. The first step is the axial averaging
of the positron-atom interaction potential, on the basis of
the continuum approximation [2]. It should be mentioned
here that the use of this approximation for very thin crystals
has been recently justified in a high-resolution channeling
experiment with 2-MeV protons and a 55-nm-thick 〈100〉
silicon crystal [7]. The second step is the azimuthal averaging
of the interaction potential obtained in the first step, on the basis
of the fact that the nanotube is chiral. The resulting continuum
positron-nanotube interaction potential reads

U (ρ; Rn) = U0

3∑
i=1

αiK0

(
βiRn

as

)
I0

(
βiρ

as

)
for ρ � Rn,

(2)

and

U (ρ; Rn) = U0

3∑
i=1

αiI0

(
βiRn

as

)
K0

(
βiρ

as

)
for ρ > Rn,

(3)

with

U0 = 16πZ2e
2Rn

34/3a2
b

, (4)

where Z2 is the nanotube atom atomic number, e is
the elementary charge, ρ = (x2 + y2)1/2, x and y are the
transverse components of positron position vector, as =
[9π2/(128Z2)]1/3a0 = 0.026 nm is the nanotube atom screen-
ing radius [33], a0 is the Bohr radius, ab is the nanotube atoms
bond length [13], Rn = 0.69 nm is the equilibrium nanotube
radius [13], (αi) = (0.35, 0.55, 0.10) and (βi) = (0.1, 1.2, 6.0)
are the fitting parameters, and I0 and K0 designate the modified
Bessel functions of the first and second kinds and 0th order,
respectively [34]. This function is continuous but its first
derivative is discontinuous at point ρ = Rn.

In the third step, the thermal vibrations of the nanotube
atoms are introduced. This is done by the initial averaging of
the interaction potential of the positron and a nanotube atom
over its displacements from the equilibrium position along
the x, y, and z axes [35]. These displacements are taken to
be small and independent and are described by a Gaussian
distribution function. This averaging appears in the third step
as the averaging of the interaction potential obtained in the

second step over the effective thermally induced changes of the
nanotube radius, R, from its equilibrium radius, Rn, along the
ρ axis. The resulting continuum positron-nanotube interaction
potential is given by

U th
qu(ρ; Rn) = 1

(2π )1/2σth

∫ R2

R1

U (ρ; R) exp

[
− (R − Rn)2

2σ 2
th

]
dR,

(5)

where σth = 0.0053 nm [36] is the one-dimensional thermal
vibration amplitude of the nanotube atoms. The integration
limits appearing in this expression are R1 = Rn − 6σth and
R2 = Rn + 6σth. They have been chosen to comprise the
interval in which the changes of the integrand are not
negligible. The integration is performed numerically. This
function and its first derivative are continuous; i.e., its first
derivative is not discontinuous at point ρ = Rn. However,
since the displacements of the nanotube atoms are small, a
useful analytical approximation of Eq. (5) can be obtained by
substituting U (ρ,R), represented as a function of ρ − R, with
its Tailor series about point ρ − Rn truncated after its second
order term [31]. For ρ � Rn, this expression becomes

U th
cl (ρ; Rn) = U0

3∑
i=1

(
αi + σ 2

thβ
2
i

2a2
s

)
K0

(
βiRn

as

)
I0

(
βiρ

as

)
.

(6)

This function is continuous but its first derivative is discon-
tinuous at point ρ = Rn, in a way similar to that of U (ρ; Rn),
given by Eqs. (2) and (4). The analysis has shown that the
difference between U th

cl (ρ; Rn) and U th
qu(ρ; Rn) is very small,

especially for ρ � Rn − as .
In the classical calculations to be presented here, we have

used U th
cl (ρ; Rn), given by Eqs. (6) and (4), as the needed

continuum positron-nanotube interaction potential. This has
been done because in these calculations ρ � Rn − as . On the
other hand, the quantum calculations have been performed
with U th

qu(ρ; Rn), given by Eqs. (6) and (2)–(4), as the needed
continuum positron-nanotube interaction potential. The reason
is the fact that the discontinuity of function U th

cl (ρ; Rn) at point
ρ = Rn, which must not be excluded from these calculations,
has proven to be a source of serious numerical problems. It is
important to note that the functions U th

cl (ρ; Rn) and U th
qu(ρ; Rn)

are cylindrically symmetric.

B. Classical approach

Let us designate the vertical and horizontal components of
the initial positron position vector, in the entrance plane of the
nanotube, as the components of its impact parameter vector (in
the impact parameter plane), by x0 and y0, and the vertical and
horizontal components of its initial momentum vectors by px0

and py0 , respectively. The vertical and horizontal components
of the final positron position vector, in the exit plane of
the nanotube, are designated by x and y, and the vertical
and horizontal components of its final momentum vector by
px and py , respectively. In the classical calculations to be
described here, the approach is via the equations of motion.
As a consequence of the axial averaging of the positron-atom
interaction potential, x, y, px , and py are obtained by solving
the positron equations of motion in the transverse position
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plane, which read

m
d2x

dt2
= −∂xU

th
cl (ρ; Rn) and m

d2y

dt2
= −∂yU

th
cl (ρ; Rn),

(7)

where ∂x = ∂/∂x , ∂y = ∂/∂y, and t denotes time. They are
solved numerically by the Runge-Kutta method of the fourth
order [37]. Since the nanotube is very short, the positron energy
loss and dispersion of its channeling angle, which are caused
by its collisions with the nanotube electrons, are neglected. As
it has been said above, during the channeling process, the angle
between the positron momentum vector and the nanotube axis
remains small. The corresponding critical angle is

θc =
[
U th

cl (Rn − as ; Rn)

E

]1/2

. (8)

For E = 1 MeV, θc = 7.3 mrad, while for E = 10 MeV, θc =
2.3 mrad. Therefore, the vertical and horizontal components
of the positron transmission angle (in the transmission angle
plane) are θx = px/p and θy = py/p, respectively, where
p = p0 is the magnitude of final positron momentum vector.
The initial values of θx and θy are θx0 = px0/p and θy0 = py0/p,
respectively.

Since the interaction of the positron and nanotube is cylin-
drically symmetric, the mapping of the impact parameter plane
to the final transverse position plane or to the transmission
angle plane is reduced to the mapping of, e.g., the x0 axis in
the impact parameter plane to the x axis in the final transverse
position plane or to the θx axis in the transmission angle plane.
We shall refer to the former mapping, x(x0), as the spatial
transmission function and to the latter mapping, θx(x0), as
the angular transmission function of the positron through the
nanotube.

The spatial and angular distributions of transmitted
positrons, i.e., their distributions in the final transverse position
plane and transmission angle plane, respectively, are generated
using the computer simulation method. The pairs of values of
x0 and y0 are chosen randomly within region ρ � Rn − as .
The chosen limiting value of ρ ensures that large values of
the transmission angle are avoided. It is assumed that the
initial positron beam diverges from the nanotube axis. Its full-
width-at-half-maximum (FWHM) is designated by 
d . The
values of θx0 and θy0 are chosen via the Gaussian distribution
functions with the corresponding standard deviation being
σθ = 
d/(8 ln 2)1/2.

C. Quantum mechanical approach

In the quantum calculations within this study, the approach
is via the time-dependent Schrödinger equation. As a conse-
quence of the axial averaging of the positron-atom interaction
potential, we solve the time-dependent positron Schrödinger
equation in the transverse position plane, which reads

ih̄∂tψs(x,y,t) = − h̄2

2m

ψs(x,y,t) + U th

qu(ρ; Rn)ψs(x,y,t),

(9)

where ψs(x,y,t) is the positron wave function in the transverse
position plane, 
 = ∂2/∂x2 + ∂2/∂y2, ∂t = ∂/∂t , and h̄ is the
reduced Planck constant.

In this study, the initial positron beam is taken to be an
ensemble of noninteracting Gaussian wave packets. It should
be emphasized that this is a novel approach—we are not aware
of a similar treatment of particle channeling in crystals or
nanotubes thus far. In this approach, the divergence of the
initial beam from the nanotube axis is taken into account
implicitly. In the coordinate representation, an initial wave
packet, for t = 0, is described by the function

ψs(x,y,0; x0,y0) = 1

(2π )1/2σρ

× exp

[
− (x − x0)2 + (y − y0)2

4σ 2
ρ

]
,

(10)

where σρ is its spatial standard deviation. In the momentum
representation, the initial wave packet is described by the
function

ψa(θx,θy ; x0,y0) = 1

(2π )1/2σθ

exp

[
− ip(x0θx + y0θy)

h̄

]

× exp

[
−θ2

x + θ2
y

4σ 2
θ

]
, (11)

which is obtained via the Fourier transformation of Eq. (10),
where σθ = 
d/(8 ln 2)1/2 is its angular standard deviation,
with 
d being the initial beam FWHM. Parameters σρ and σθ

are connected to each other by the expression σρσθ = h̄/(2p),
representing the uncertainty principle in the problem under
consideration.

In the coordinate representation, the final wave packet is
described by the function ψs(x,y,t ; x0,y0) obtained as the
solution of Eq. (9) for t = mL/p. The equation is solved
numerically using the Chebishev global propagation method
[38]. The computation domain is region −Dx/2 � x � Dx/2
and region −Dy/2 � y � Dy/2, with Dx = Dy = 3Rn. It has
been established that, in order to avoid problems in applying
this method, the needed continuum positron-nanotube interac-
tion potential and its first derivative must be continuous in the
whole transverse position plane, including point ρ = Rn. That
is why we use Eq. (5) in the quantum calculations. The spatial
distribution of transmitted positrons is given as a weighted
sum of the final positron spatial probability functions over the
chosen values of x0 and y0,

Ys(x,y) =
∑
x0,y0

c(x0,y0)|ψs(x,y,t ; x0,y0)|2. (12)

The pairs of values of x0 and y0 are chosen within region
ρ � Rn − as . This should be done randomly and the number
of the pairs of values should be large. In that case, each of the
coefficients c(x0,y0) would be equal to 1/N , with N being
the initial number of positrons. However, in order to minimize
the computation time, the pairs of values of x0 and y0 are
chosen using an algorithm providing a minimal deviation of
the initial spatial distribution of positrons from the uniform
distribution within region ρ � Rn − as with a smaller number
of pairs. This uniform distribution is given by 1/[π (Rn − as)2].
We achieve this by adjusting the values of c(x0,y0).

In the momentum representation, the final wave packet
is described by the function ψs(θx,θy,t ; x0,y0), obtained via

012902-3
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the Fourier transformation of ψs(x,y,t ; x0,y0) for t = mL/p.
The transformation is performed numerically. The angular
distribution of transmitted positrons is given as the weighted
sum of the final positron angular probability functions over the
chosen values of x0 and y0,

Ya(θx,θy) =
∑
x0,y0

c(x0,y0)|ψa(θx,θy,t,x0,y0)|2. (13)

We also analyze here the case in which the initial positron
beam is represented as the plane wave. In this case, in the
coordinate representation, the initial beam spatial probability
function is derived from Eq. (10) with the condition σρ → ∞.
It reads 1/(2πσ 2

ρ ). In the momentum representation, the initial
beam angular probability function is derived from Eq. (11)
with the condition σθ → 0. It reads δ(θx)δ(θy), where δ

designates the Dirac δ function. However, this means that
the solving of Eq. (9) would have to begin with a function
having a very small constant value in the whole computation
domain. That would be a source of serious numerical problems.
Therefore, we choose for the initial wave function in the
coordinate representation the function having the constant
value in the whole computation domain that is determined
by the appropriate normalization condition,

ψs(x,y,0) = 1

(DxDy)1/2
. (14)

This value has proven to be sufficiently large to avoid
numerical problems. The corresponding initial wave function
in the momentum representation is obtained numerically via
the Fourier transformation of Eq. (14). It is different from zero
only at the origin and the corresponding value is

ψa(θx,θy,0) = p(DxDy)1/2

2πh̄
. (15)

As it has been already said, in the coordinate representation,
the final wave function, ψs(x,y,t), is obtained as the solution
of Eq. (9) for with t = mL/p. Again, the equation is solved
numerically using the Chebishev global propagation method
[38]. The spatial distribution of the transmitted positrons is

Ys(x,y) = |ψs(x,y,t)|2. (16)

In the momentum representation, the final wave function,
ψa(θx,θy,t), is obtained via the Fourier transformation of
ψs(x,y,t) for t = mL/p. The transformation is performed nu-
merically. The angular distribution of the transmitted positrons
is

Ya(θx,θy) = |ψa(θx,θy,t)|2. (17)

III. RESULTS AND DISCUSSION

A. Classical calculations

Figure 1(a) shows the spatial transmission function of
1-MeV positrons through a 200-nm-long (11,9) SWCN for
the initial positron momentum vector parallel to the nanotube
axis. This function has two pairs of extrema—a maximum and
minimum designated by 1s,1, and a miminum and maximum
designated by 2s,1. Extrema 1s,1 lie at points x

s,1
01 = 0.29 nm

and extrema 2s,1 at points x
s,1
02 = ±0.64 nm. This means

(a)

(b)

FIG. 1. (a) Spatial transmission functions of 1-MeV positrons
through a 200-nm-long (11,9) SWCN (solid line) and of 10-MeV
positrons through a 560-nm-long (11,9) SWCN (dashed line, co-
inciding with the solid line) for px0 = 0 and py0 = 0. (b) The
corresponding angular transmission functions, which do not coincide.

that there are two circular spatial rainbow lines in the
impact parameter plane, whose radii are |xs,1

01 | and |xs,1
02 |.

The corresponding values of the spatial transmission function
are x

s,1
1 = ±0.18 and x

s,1
2 = ±0.64 nm, respectively. Thus,

there are two circular rainbow lines in the final transverse
position plane, being the images of the spatial rainbow lines
in the impact parameter plane, whose radii are |xs,1

1 | and
|xs,1

2 |. The analysis has shown that the positron trajectories
corresponding to extrema 1s,1 involve one deflection from the
nanotube wall and the trajectories corresponding to extrema
2s,1 two deflections from the nanotube wall. Hence, one can
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say that the former extrema belong to a primary rainbow and
the latter extrema to a secondary rainbow in the final transverse
position plane.

It is evident that the inverse function of this spatial
transmission function has five branches, which are separated
by the rainbow extrema. It is triple valued in the region between
−0.18 and +0.18 nm, single valued in the regions between
−0.50 and −0.18 nm and between +0.18 and +0.50 nm, and
double valued in the regions between −0.64 and −0.50 nm
and between +0.50 and +0.64 nm. Therefore, the inner side
of each of the two rainbow lines in the final transverse position
plane is recognized as the bright side of the rainbow and its
outer side as the dark side of the rainbow.

Figure 1(a) also gives the spatial transmission function of
10-MeV positrons through a 560-nm-long (11,9) SWCN with
the initial positron momentum vector parallel to the nanotube
axis. It coincides with the corresponding spatial transmission
functions in the case of E = 1 MeV. This is a consequence of
the fact that, in these two cases, the values of � coincide. The
primary and secondary rainbow extrema that occur in the case
of E = 10 MeV are designated by 1s,10 and 2s,10, the points
at which they lie by x

s,10
01 and x

s,10
02 , and the corresponding

values of spatial transmission function by x
s,10
1 and x

s,10
2 ,

respectively.
Figure 1(b) shows the angular transmission function of

1-MeV positrons through a 200-nm-long (11,9) SWCN with
the initial positron momentum vector parallel to the nanotube
axis. This function has a pair of extrema—a minimum and
maximum designated by 1a,1. They lie at points x

a,1
01 =

±0.60 nm. This means that there is one circular angular rain-
bow line in the impact parameter plane, whose radius is |xa,1

01 |.
The corresponding values of the angular transmission function
are θ

a,1
x1 = ±5.3 mrad. Hence, there is one circular rainbow

line in the transmission angle plane, being the image of the
angular rainbow line in the impact parameter plane, whose
radius is |θa,1

x1 |. It has been found that the positron trajectories
corresponding to extrema 1a,1 involve one deflection from the
nanotube wall. Thus, one can conclude that these extrema
belong to a primary rainbow in the transmission angle plane.

It is evident that the inverse function of this angular
transmission function has three branches. It is triple valued
in the region between −5.3 and +5.3 mrad and single valued
in the regions between −8.3 and −5.3 mrad and between +5.3
and +8.3 mrad. Therefore, the inner side of the rainbow line in
the transmission angle plane is recognized as the bright side of
the rainbow and its outer side as the dark side of the rainbow.

Figure 1(b) also gives the angular transmission function
of 10-MeV positrons through a 560-nm-long (11,9) SWCN
with the initial positron momentum vector parallel to the
nanotube axis. As the corresponding angular transmission
function in the case of E = 1 MeV, this function has a
minimum and maximum lying at points x

a,10
01 = ±0.60 nm.

However, the corresponding values of the angular transmission
function are θ

a,10
x1 = ±1.9 mrad. These extrema, designated by

1a,10, belong to a primary rainbow in the transmission angle
plane.

Figure 2 gives the angular transmission function of 1-MeV
positrons through a 200-nm-long (11,9) SWCN as a function
of the corresponding spatial transmission function with the

FIG. 2. Rainbow diagrams of 1-MeV positrons transmitted
through a 200-nm-long (11,9) SWCN (solid line) and of 10-MeV
positrons transmitted through a 560-nm-long (11,9) SWCN (dashed
line) for px0 = 0 and py0 = 0.

initial positron momentum vector parallel to the nanotube axis.
We refer to the diagram representing this dependence as the
rainbow diagram of the positrons transmitted through the nan-
otube. The tangents of this diagram perpendicular to the x axis
determine the positions of the four rainbow extrema in the final
transverse position plane while its tangents perpendicular to
the θx axis determine the positions of the two rainbow extrema
in the transmission angle plane. This figure also gives the
corresponding rainbow diagram in the case of E = 10 MeV.

Figure 3 gives the normalized classical distribution along
the θx axis of 1-MeV positrons transmitted through a
200-nm-long (11,9) SWCN with the initial beam parallel to the
nanotube axis. The initial number of positrons is N = 1 × 108.
It has a strong maximum corresponding to the nanotube axis
and a pair of weak maxima lying at points θ

a,1
x1 . A comparison

of this figure with Fig. 1(b) shows that the weak maxima are
the classical primary rainbow maxima. They are designated by
1cl. The fact that the distribution contains the positrons with the
transmission angles beyond the rainbow maxima, i.e., below
−5.3 mrad and above +5.3 mrad, is attributed to the fact that
a branch of the angular transmission function exists in each of
these regions. This figure also shows the normalized classical
angular distribution of 1-MeV positrons transmitted through
a 200-nm-long (11,9) SWCN with the initial beam diverging
from the nanotube axis and having 
d that gives σθ = 0.1θc =
0.73 mrad. Again, the initial number of positrons is N =
1 × 108. In this case, the classical primary rainbow maxima,
designated by 1cl

′, lie at points ±5.1 mrad. One can say that
the divergence of the initial beam caused the rainbow maxima
to move slightly toward the origin and lose some strength.

It should be mentioned here that the angular distribution of
the transmitted positrons does not coincide with their spatial
distribution that would be measured with a detector placed
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FIG. 3. One-dimensional normalized classical angular distribu-
tions of 1-MeV positrons transmitted through a 200-nm-long (11,9)
SWCN for σθ = 0 (dashed line) and σθ = 0.1θc (solid line).

close to the nanotube exit. However, if the detector were placed
far away from the nanotube exit, it would give the spatial
distribution that coincides with the angular distribution with
the scaled abscissa. The scaling factor is the distance of the
detector from the nanotube exit.

B. Quantum mechanical calculations

Figure 4 shows the normalized angular distribution of
1-MeV positrons transmitted through a 200-nm-long (11,9)
SWCN with the initial beam represented as the plane wave
together with the corresponding classical distribution, with
the initial beam parallel to the nanotube axis (see Fig. 3).
The quantum distribution can be viewed as the superposition
of a bell-shaped component and a component consisting of
five pairs of maxima. Among these pairs of maxima, the ones
laying at points ±3.5 and ±2.2 mrad are more pronounced than
the others. We explain these maxima by the fact that the inverse
function of the corresponding angular transmission function is
triple valued on the bright side of the classical primary rainbow
[see Fig. 1(b)]. They appear due to the constructive interference
of the three rays within the plane wave that have the same
position in the transmission angle plane [19–21]. These rays
interfere since their path lengths through the nanotube and,
hence, the phases they accumulate during the transmission,
are different.

Figures 5(a) and 5(b) give the two-dimensional initial
spatial and angular distributions of a 1-MeV positron repre-
sented as the Gaussian wave packet with the angular standard
deviation σθ = 0.1θc = 0.73 mrad, giving the spatial standard

FIG. 4. One-dimensional normalized angular distribution of
1-MeV positrons transmitted through a 200-nm-long (11,9) SWCN
with the initial beam represented as the plane wave (solid line) and the
corresponding classical angular distribution, for σθ = 0 (dashed line).

deviation σρ = 0.19 nm, which is placed at the intersection
of the primary angular rainbow line in the impact parameter
plane and the x axis, respectively. The resulting spatial and
angular distributions of the positron transmitted through a
200-nm-long (11,9) SWCN are given in Figs. 5(c) and 5(d),
respectively. One can see that the resulting spatial distribution
contains a strong maximum and a number of additional weaker
maxima extending from the nanotube wall toward its axis
and beyond it. We explain these maxima by the fact that
the inverse function of the corresponding spatial transmission
function is double valued in the vicinity of the classical
secondary rainbow and that the initial wave packet covers
the two branches of the inverse function [see Fig. 1(a)]. They
appear due to the constructive interference of the two rays
within the wave packet that have the same position in the
final transverse position plane [19–21]. The resulting angular
distribution contains a strong maximum and several weaker
maxima extending toward the origin and beyond it. Similarly,
these maxima are explained by the fact that the inverse function
of the corresponding angular transmission function is double
valued in the vicinity of the classical primary rainbow and that
the initial wave packet covers the two branches of the inverse
function [see Fig. 1(b)]. They appear due to the constructive
interference of the two rays within the wave packet that have
the same position in the transmission angle plane [19–21].

Figure 6 shows the one-dimensional angular distributions of
the transmitted positrons for E = 1 MeV and L = 200 nm with
the positrons represented initially as the Gaussian wave packets
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(a) (b)

(c) (d)

FIG. 5. (Color online) (a) Two-dimensional initial spatial distribution of a 1-MeV positron represented as the Gaussian wave packet with
σθ = 0.1θc and (x0,y0) = (0.599 nm, 0), (b) the corresponding initial angular distribution, (c) the resulting spatial distribution of the positron
transmitted through a 200-nm-long (11,9) SWCN, and (d) the corresponding resulting angular distribution. The dashed circle, appearing in
panels (a) and (c), represents the nanotube wall.

with σθ = 0.1θc = 0.73 mrad, giving σρ = 0.19 nm, placed
at the intersection of the primary angular rainbow line in the
impact parameter plane and the x axis, close to this intersection
toward the nanotube axis, and at the axis. The first distribution
is contained in the two-dimensional angular distribution shown
in Fig. 5(d). The strongest maximum lies at point −3.8 mrad
and the next two weaker maxima lie at points −2.3 and
−1.2 mrad. On the basis of the above given explanation,
one can state that the strongest maximum of the distribution
belongs to the quantum primary rainbow and the two weaker
maxima belong to the first and second primary supernumerary

rainbows [19–21]. The second distribution is similar to the
first distribution. This can be explained by the fact that the
corresponding initial wave packet is placed sufficiently close
to the primary angular rainbow line in the impact parameter
plane to cover the two branches of the transmission function.
The third distribution is a bell-shaped one with no maxima that
would be attributed to the interference of rays within the wave
packet. This is understandable since the corresponding initial
wave packet is placed sufficiently far away from the primary
angular rainbow line in the impact parameter plane and,
therefore, covers only one branch of the transmission function.
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FIG. 6. One-dimensional angular distributions of 1-MeV
positrons transmitted through a 200-nm-long (11,9) SWCN with the
positrons represented initially as the Gaussian wave packets with
σθ = 0.1θc and (x0,y0) = (0,0) (dotted line), (x0,y0) = (0.552 nm, 0)
(dashed line), and (x0,y0) = (0.599 nm, 0) (solid line).

Figure 7 shows the one-dimensional normalized angular
distribution of the transmitted positrons for E = 1 MeV
and L = 200 nm with the beam represented initially as
the ensemble of Gaussian wave packets with σθ = 0.1θc =
0.73 mrad, giving σρ = 0.19 nm, together with the correspond-
ing classical distribution, with the initial beam diverging from
the nanotube axis (see Fig. 3). In the case of the quantum
distribution, the initial number of positrons is N = 151. The
quantum distribution is the superposition of a bell-shaped
component and a component consisting of three pairs of
maxima. The strongest pair of maxima lies at points ±3.7 mrad
and the two weaker pairs of maxima lie at points ±2.2
and ±1.2 mrad. These maxima should be explained by the
fact that the inverse function of the corresponding angular
transmission function is triple valued on the bright side
of the classical primary rainbow [see Fig. 1(b)]. However,
the spatial standard deviation of the initial wave packets is
not sufficiently large to enable the covering of the three
branches of the transmission function. Namely, if an initial
wave packet covers two branches of the transmission function
joining at point +0.60 or −0.60 nm, it cannot cover its
third branch, lying in the region below −0.60 nm or above
+0.60 nm, respectively. Hence, these maxima appear due to
the constructive interference of the two rays within the wave
packets that have the same position in the transmission angle
plane [19–21]. The strongest pair of maxima, being close to
the pair of classical primary rainbow maxima, designated
by 1qu

′, belongs to the quantum primary rainbow and the

FIG. 7. One-dimensional normalized angular distribution of
1-MeV positrons transmitted through a 200-nm-long (11,9) SWCN
represented initially as the ensemble of Gaussian wave packets
with σθ = 0.1θc (solid line) and the corresponding classical angular
distribution (dashed line).

two weaker pairs of maxima belong to the first and second
primary supernumerary rainbows [19–21]. A comparison of
this distribution with the corresponding distribution obtained
with the initial beam represented as the plane wave shows that
the two pairs of stronger maxima of the latter distribution, lying
at points ±3.5 and ±2.2 mrad, can be viewed as the primary
rainbow maxima and the first supernumerary primary rainbow
maxima. That is why the pair of maxima lying at points
±3.5 mrad is designated by 1qu.

Figure 8 shows the one-dimensional normalized angular
distribution of the transmitted positrons for E = 1 MeV and
L = 200 nm with the beam represented initially as the ensem-
ble of Gaussian wave packets with σθ = 0.2θc = 1.47 mrad,
giving σρ = 0.09 nm, together with the corresponding classi-
cal distribution, with the initial beam diverging from the nan-
otube axis. In the case of the quantum distribution, the initial
number of positrons is N = 610. The quantum distribution is
the superposition of a bell-shaped component and a component
consisting of only two pairs of maxima. The stronger pair of
maxima, being close to the pair of classical primary rainbow
maxima, designated by 1qu

′, belongs to the quantum primary
rainbow and the weaker pair of maxima belongs to the first
supernumerary primary rainbow. The positions of these pairs
of maxima relative to the classical primary rainbow maxima
practically coincide with the positions of the corresponding
pairs of maxima appearing in the case of σθ = 0.1θc. One can
anticipate that, for a much larger angular standard deviation of
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FIG. 8. One-dimensional normalized angular distribution of
1-MeV positrons transmitted through a 200-nm-long (11,9) SWCN
represented initially as the ensemble of Gaussian wave packets
with σθ = 0.2θc (solid line) and the corresponding classical angular
distribution (dashed line).

the initial beam, the quantum rainbow maxima will be smeared
out as well as the classical rainbow maxima, and the quantum
and classical distributions will practically coincide.

Figure 9 shows the one-dimensional normalized angular
distribution of the transmitted positrons for E = 10 MeV
and L = 560 nm with the beam represented initially as
the ensemble of Gaussian wave packets with σθ = 0.1θc =
0.23 mrad, giving σρ = 0.08 nm, together with the correspond-
ing classical distribution, with the initial beam diverging from
the nanotube axis. In the case of the quantum distribution,
the initial number of positrons is N = 865. The quantum
distribution is the superposition of a bell-shaped component
and a component consisting of four pairs of maxima. The
three stronger pairs of maxima lie closer to each other and to
the classical primary rainbow maxima than the three pairs of
maxima appearing in the case of E = 1 MeV. The strongest
pair of maxima, being close to the pair of classical primary
rainbow maxima, designated by 1qu

′, belongs to the quantum
primary rainbow and the three weaker pairs of maxima belong
to the supernumerary primary rainbows. One can anticipate
that, for a much higher positron kinetic energy, the quantum
rainbow pattern will contract into a maximum practically
coinciding with the classical rainbow maximum.

In our earlier studies of proton channeling in carbon
nanotubes, we mentioned the possibility of using the classical
angular distributions of transmitted protons, determined by the
corresponding rainbow patterns, for exploring the transverse
lattice structures of nanotubes [16,29]. Following that idea, we

FIG. 9. One-dimensional normalized angular distribution of
10-MeV positrons transmitted through a 560-nm-long (11,9) SWCN
represented initially as the ensemble of Gaussian wave packets
with σθ = 0.1θc (solid line) and the corresponding classical angular
distribution (dashed line).

have calculated the angular distribution of 1-MeV positrons
transmitted through a 200-nm-long (12,6) SWCN with the
beam represented initially as the ensemble of Gaussian wave
packets with σθ = 0.1θc = 0.73 mrad, giving σρ = 0.19 nm,
and compared it with the corresponding above-described
distribution obtained with the (11,9) SWCN. The (12,6)
SWCN is chiral too. The corresponding distribution has been
generated with the initial number of positrons N = 139. These
distributions are given in Fig. 10. The equilibrium radii of the
two nanotubes (Rn) are close to each other—the radius of
the former nanotube is 0.63 nm and the radius of the latter
one 0.69 nm [13]. In both cases, one circular rainbow line in
the transmission angle plane occurs. The radii of these lines
(|θa,1

x1 |) are close to each other—the radius of the former line
is 4.5 mrad and the radius of the latter one 5.3 mrad. This
means that it would be difficult to see the difference between
the radii of these lines in the classical calculations with the
chosen positron beams (with σθ = 0.73 mrad). However, the
quantum calculations show that the distributions obtained with
the two nanotubes are considerably different from each other.
The former distribution is the superposition of a bell-shaped
component and a component consisting of two pairs of
maxima while the latter distribution is the superposition of
a bell-shaped component and a component consisting of three
maxima. Besides, the stronger pair of maxima of the former
distribution, designated by 1qu

′ for (12,6), is markedly shifted
from the strongest pair of maxima of the latter distribution,
designated by 1qu

′ for (11,9). Consequently, the pronounced
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FIG. 10. One-dimensional normalized angular distributions of
1-MeV positrons transmitted through the 200-nm-long (12,6) and
(11,9) SWCNs represented initially as the ensemble of Gaussian wave
packets with σθ = 0.1θc (solid line and dashed line, respectively).

pair of maxima of the former distribution practically coincides
with the pair of minima between the two pairs of pronounced
maxima of the latter distribution. Therefore, one can state that
quantum rainbow channeling could be also applied for the
characterization of nanotubes.

IV. CONCLUSIONS

We have investigated the angular distributions of positrons
transmitted through the (11,9) SWNC for E = 1 MeV and
L = 200 nm and for E = 10 MeV and L = 560 nm.

In the case of E = 1 MeV and L = 200 nm with
the positron beam represented initially as the ensemble of

Gaussian wave packets with σθ = 0.1θc = 0.73 mrad, giving
σρ = 0.19 nm, the angular distribution can be viewed as the
superposition of a bell-shaped component and a component
consisting of three pairs of maxima. These maxima appear
due to the constructive interference of two out of three
rays within the wave packet that have the same position in
the transmission angle plane. The strongest pair of maxima
belongs to the quantum primary rainbow and the two weaker
pairs of maxima belong to the first and second primary
supernumerary rainbows.

When E = 1 MeV and L = 200 nm with the positron
beam represented initially as the ensemble of Gaussian wave
packets with σθ = 0.2θc = 1.47 mrad, giving σρ = 0.09 nm,
the angular distribution is the superposition of a bell-shaped
component and a component consisting of only two pairs of
maxima. We have concluded that, for a much larger value of σθ ,
the quantum rainbow maxima will be smeared out as well as
the classical rainbow maxima, and the quantum and classical
distributions will practically coincide.

For E = 10 MeV and L = 560 nm with the positron beam
represented initially as the ensemble of Gaussian wave packets
with σθ = 0.1θc = 0.23 mrad, giving σρ = 0.08, the angular
distribution is the superposition of a bell-shaped component
and a component consisting of four pairs of maxima. The
three stronger pairs of maxima lie closer to each other and to
the classical primary rainbow maxima than the three pairs of
maxima appearing for E = 1 MeV. It has been concluded that,
for a much higher value of E, the quantum rainbow pattern
will contract into a maximum practically coinciding with the
classical rainbow maximum.

In addition, we have compared the angular distributions of
positrons transmitted through the (12,6) and (11,9) SWCNs
for E = 1 MeV and L = 200 nm with the beam represented
initially as the ensemble of Gaussian wave packets with σθ =
0.1θc = 0.73 mrad, giving σρ = 0.19 nm. The conclusion of
the comparison is that quantum rainbow channeling could be
employed for the characterization of nanotubes.
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