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This paper is devoted to a quantummechanical consideration of the transmission of positrons of a kinetic
energy of 1 MeV through very short (11, 9) single-wall chiral carbon nanotubes. The nanotube lengths are
between 50 and 320 nm. The transmission process is determined by the rainbow effects. The interaction
potential of a positron and the nanotube is deduced from the Molire’s interaction potential of the positron
and a nanotube atom using the continuum approximation. We solve numerically the time-dependent
Schrödinger equation, and calculate the spatial and angular distributions of transmitted positrons. The
initial positron beam is assumed to be an ensemble of non-interacting Gaussian wave packets. We
generate the spatial and angular distributions using the computer simulation method. The examination
is focused on the spatial and angular primary rainbows. It begins with an analysis of the corresponding
classical rainbows, and continues with a detailed investigation of the amplitudes and phases of the wave
functions of transmitted positrons. These analyses enable one to identify the principal and supernumer-
ary primary rainbows appearing in the spatial and angular distributions. They also result in a detailed
explanation of the way of their generation, which includes the effects of wrinkling of each wave packet
during its deflection from the nanotube wall, and of its concentration just before a virtual barrier lying
close to the corresponding classical rainbow. The wrinkling of the wave packets occurs due to their inter-
nal focusing. In addition, the wave packets wrinkle in a mutually coordinated way. This explanation may
induce new theoretical and experimental investigations of quantum rainbows occurring in various
atomic collision processes.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

A positively charged particle is considered as being channeled if
it is undergoing a series of correlated small angle collisions with
the atoms of the atomic strings defining an axial or planar channel
of a crystal [1–3]. The maxima of the yield of particles transmitted
through the channel occurring due to the singularities of the map-
ping of the impact parameter plane to the final transverse position
plane or transmission angle plane are called rainbows [4–8]. In
accordance with that, the process in which such maxima appear
is referred to as rainbow channeling. If the particle kinetic energy
is sufficiently high to make the quantum aspects of its behavior
negligible, the maxima are called classical rainbows. On the other
hand, when the particle kinetic energy is sufficiently low to make
the quantum effects dominant, the maxima are designated as
quantum rainbows. Each quantum rainbow comprises a principal
rainbow and one or more supernumerary rainbows.
Carbon nanotubes are the sheets of carbon atoms lying at the
hexagonal crystal lattice sites rolled up into cylinders [9–11]. If
the atomic strings of a nanotube spiral around its axis, it is called
chiral, and if the atomic strings are parallel to the axis, it is called
achiral. Nanotubes can be the single-wall and multi-wall ones,
depending on the number of cylinders they contain. The nanotube
diameters are of the order of a nanometer and their lengths can be
more than a hundred micrometers.

Carbon nanotubes can be used to channel positively charged
particles [12]. So far, a number of theoretical groups have studied
ion channeling in nanotubes with the main objective to explore
the possibility of guiding ion beams with nanotubes [13]. On the
other hand, it has been established that rainbows appear in chan-
neling of charged particles in nanotubes as well [14–17]. The
experimental studying of ion channeling in nanotubes has not
yet been sufficiently developed [18,,19].

Recently, Petrović et al. [17] presented a classical and quantum
mechanical investigation of the transmission of positrons through
very short (11, 9) single-wall chiral carbon nanotubes. The positron
kinetic energies were 1 and 10 MeV while the nanotube lengths
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were 200 and 560 nm, respectively. The analysis was focused on
the rainbow effects, which were clearly observed in the spatial
and angular distributions of transmitted positrons. The quantum
rainbow maxima were explained by the constructive interference
of the two rays within the wave packet that started from the points
in the impact parameter plane on the two sides of the rainbow
point and finished at the same point in the final transverse position
plane or transmission angle plane. These authors have used the
same approach to explore the possibility of using quantum rain-
bows for characterization of very short carbon nanotubes [20].

Here, we present a detailed quantum mechanical study of the
transmission of positrons of a kinetic energy of E ¼ 1 MeV through
very short (11, 9) single-wall chiral carbon nanotubes. The nan-
otube lengths are L ¼ 50–320 nm. The corresponding reduced nan-
otube lengths are K ¼ 0:03–0.19 [5,6,17]. The initial positron beam
is taken to be divergent relative to the nanotube axis. Its full-
width-at-half-maximum (FWHM) is denoted as Dd. The equilib-
rium nanotube radius is Rn ¼ 0:69 nm [10]. The study is a continu-
ation of the studies of Petrović et al. [17] and Ćosić et al. [20]. It is
focused on the quantum primary rainbows, i.e., the principal and
supernumerary primary rainbows, occurring in the spatial and
angular distributions of transmitted positrons. We present a
detailed analysis of the amplitudes and phases of the wave func-
tions of transmitted positrons, and give a quantum mechanical
explanation of the obtained distributions.
2. Theory

The subject of this study is a positron channeled in a nanotube.
We choose the z axis to coincide with the nanotube axis; it is the
longitudinal axis. The x and y axes are taken to be the vertical
and horizontal axes, respectively; they are the transverse axes.
The origin lies in the nanotube entrance plane. The nanotube
entrance plane is the positron impact parameter plane, the nan-
otube exit plane is its final transverse position plane, and a plane
in between them is a transverse position plane.

2.1. Interaction potentials

In order to describe the interaction of the positron and a nan-
otube atom, we use the Molière’s interaction potential [21]. The
needed interaction potential of the positron and nanotube is
deduced in three steps. In the first step, we axially average the
positron-atom interaction potential, employing the continuum
approximation [2]. In the second step, the interaction potential
obtained in the first step is azimuthally averaged. This is justified
by the facts that the nanotube is chiral and contains even 602 pairs
of atomic strings parallel to its axis. The resulting positron-
nanotube interaction potential reads

Uðq;RnÞ ¼ U0

X3
i¼1

aiK0
biRn

as

� �
I0

biq
as

� �
for q 6 Rn ð1Þ

and

Uðq;RnÞ ¼ U0

X3
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aiI0
biRn
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� �
K0

biq
as

� �
for q > Rn ð2Þ

with

U0 ¼ 16pZ2e2Rn

33=2a2b
; ð3Þ

where Z2 ¼ 6 is the nanotube atom atomic number, e is the elemen-

tary charge, as ¼ ½9p2=ð128Z2Þ�1=3a0 is the nanotube atom screening
radius with a0 ¼ 0:026 nm being the Bohr radius, ab ¼ 0:14 nm is
the nanotube atoms bond length [10], q ¼ ðx2 þ y2Þ1=2 with x and y
being the transverse components of the positron position vector,
ðaiÞ ¼ ð0:35;0:55;0:10Þ and ðbiÞ ¼ ð0:1;1:2;6:0Þ are the fitting
parameters, and I0 and K0 denote the modified Bessel functions of
the first and second kinds and 0th order, respectively [22]. The
Molière’s interaction potential with the above given screening radius
is chosen because it was employed for a very successful reproduction
of a rainbow channeling experimentwith an accurate computer sim-
ulation code [23]. It is evident that Eqs. (1)–(3) do not contain explic-
itly the nanotube chiral indices,m ¼ 11 and n ¼ 9. These indices are

hidden in Rn ¼ ½ð31=2=ð2pÞ�ðm2 þmnþ n2Þ1=2ab [22].
In the third step, we introduce the thermal vibrations of nan-

otube atoms [24,17]. This is done in a way appearing as the aver-
aging of the interaction potential obtained in the second step
over the effective thermally induced changes of the nanotube
radius, R, from its equilibrium value, Rn, along the q axis. The
positron-nanotube interaction potential is given by

Uqu
th ðq;RnÞ ¼ 1

ð2pÞ1=2rth

Z R2

R1

Uðq;RÞ exp �ðR� RnÞ2
2r2

th

" #
dR; ð4Þ

where rth ¼ 0:0053 nm [25] is the one-dimensional thermal vibra-
tion amplitude of the nanotube atoms. We take that the integration
limits appearing in this expression are R1 ¼ Rn � 6rth and
R2 ¼ Rn þ 6rth. They determine the interval in which the changes
of the integrand are not negligible. The integration is performed
numerically. It should be emphasized that the function Uqu

th ðq;RnÞ
and its first derivative are continuous. However, if one takes into
account the fact that the displacements of the nanotube atoms
are small, a useful analytical approximation of Eq. (4) can be derived
[16,17]. When q 6 Rn, this equation becomes

Ucl
thðq;RnÞ ¼ U0

X3
i¼1

ai þ r2
thb

2
i

2a2
s

 !
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biRn
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We have found that this function is continuous and that its
deviation from Uqu

th ðq;RnÞ is very small, especially when
q 6 Rn � as. However, its first derivative is discontinuous at the
point q ¼ Rn.

In the classical calculations, q 6 Rn � as, i.e., the discontinuity of

Ucl
thðq;RnÞ, at point q ¼ Rn, is not included. Therefore, in this case,

we use Ucl
thðq;RnÞ, given by Eqs. (5) and (3), as the needed

positron-nanotube interaction potential. On the other hand, we
have found that in the quantum mechanical calculations, the dis-

continuity of Ucl
thðq;RnÞ, which cannot be excluded, is a source of

serious numerical problems. Consequently, in this case,
Uqu

th ðq;RnÞ, given by Eqs. (4) and (1)–(3), is required as the needed

interaction potential. It should be noted that Ucl
thðq;RnÞ and

Uqu
th ðq;RnÞ are cylindrically symmetric.
We would like to emphasize that Uqu

th ðq;RnÞ represents a circular
potential barrier of a finite height, which means that the positron
always tunnels through the nanotube wall, i.e., it is always partly
dechanneled. However, it has been found that when the nanotube
is very short, the positron dechanneling effect is much less pro-
nounced than the channeling effect.

2.2. Classical approach

The vertical and horizontal components of the initial positron
position vector, in the impact parameter plane, are denoted as x0
and y0, and the vertical and horizontal components of its initial
momentum vector as px0 and py0, respectively. Further, the vertical
and horizontal components of the positron position vector during
the channeling are denoted as xðtÞ and yðtÞ, and the vertical and
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horizontal components of its momentum vector during the
channeling as pxðtÞ and pyðtÞ, respectively, where t denotes time.
In the classical calculations, we solve the equations of motion. Since
the positron-atom interaction potential is axially averaged,
xðtÞ; yðtÞ; pxðtÞ and pyðtÞ are obtained via the equations of motion
in the transverse position plane and the positron-nanotube interac-
tion potential determined by Eqs. (5) and (3). The equations are
solved numerically. Since the nanotube is very short, we neglect
the positron energy loss and dispersion of its channeling angle.
Therefore, the magnitude of the final positron momentum vector,
p, is equal to the magnitude of its initial momentum vector, p0.

In the channeling process under consideration, the critical angle
equals hc ¼ 7:3 mrad [17]. This means that the angle between the
positron momentum vector and nanotube axis is always smaller
than hc . Therefore, the vertical and horizontal components of the
positron channeling angle can be taken to be hxðtÞ ¼ pxðtÞ=p and
hyðtÞ ¼ pyðtÞ=p, respectively. The initial values of these functions
are hx0 ¼ px0=p0 and hy0 ¼ py0=p0, respectively.

It has been said above that the positron-nanotube interaction
potential is cylindrically symmetric. As a result, the mapping of
the impact parameter plane to the transverse position plane or
the channeling angle plane is reduced to the mapping of, e.g., the
x0 axis in the impact parameter plane to the x axis in the transverse
position plane or the hx axis in the channeling angle plane. The for-
mer mapping, xðx0; tÞ, will be referred to as the positron spatial
channeling function and the latter mapping, hxðx0; tÞ, as the
positron angular channeling function. One can also analyze the dia-
grams ~xðhx; tÞ ¼ �x½x0ðhxÞ; t� and ~hxðx; tÞ ¼ hx½x0ðxÞ; t� [17]. The for-
mer diagram is the negative inverse of the latter one and vice
versa. These diagrams are referred to as the spatial and angular
rainbow diagrams of the positrons channeled in the nanotube,
respectively.

Let us now introduce the classical spatial and angular
Hamilton’s principal functions of the positrons channeled in the

nanotube, Sclqðx; tÞ and Sclh ðhx; tÞ, respectively. In accordance with a
description given in Ref. [26], these functions satisfy the equations

dSclqðx; tÞ
dx

¼ p~hxðx; tÞ ð6Þ

and

dSclh ðhx; tÞ
dhx

¼ p~xðhx; tÞ: ð7Þ

These equations cannot be solved directly since the functions on
their right sides are multi-valued. However, they can be trans-
formed into the equations

deScl
qðx0; tÞ
dx0

¼ phxðx0; tÞdxðx0; tÞdx0
ð8Þ

and

deScl
h ðx0; tÞ
dx0

¼ �pxðx0; tÞdhxðx0; tÞdx0
; ð9Þ

respectively, where eScl
qðx0; tÞ ¼ Sclq ½xðx0Þ; t� and eScl

h ðx0; tÞ ¼ Sclh ½hxðx0Þ; t�.
The functions on the right sides of these equations are single-
valued. The equations are solved numerically. Their solutions lead

directly to Sclqðx; tÞ and Sclh ðhx; tÞ, respectively.

2.3. Quantum mechanical approach

In the quantum mechanical calculations, the approach is via
the time-dependent Schrödinger equation. Since the positron-
atom interaction potential is axially averaged, we solve the
time-dependent positron Schrödinger equation in the transverse
position plane, which is

i�h@twsðx; y; tÞ ¼ � �h2

2m
Dwsðx; y; tÞ þ Uth

quðq;RnÞwsðx; y; tÞ; ð10Þ

where wsðx; y; tÞ is the positron wave function in the transverse
position plane, D ¼ @2=@x2 þ @2=@y2; @t ¼ @=@t;m is the positron
relativistic mass, and �h is the reduced Planck constant.

The initial positron beam is represented as an ensemble of non-
interacting Gaussian wave packets [17]. As a result, we implicitly
take into account the divergence of the initial beam relative to
the nanotube axis. It should be emphasized that such a treatment
differs from the previous treatments of positron channeling in crys-
tals [27–29], in which the dynamical diffraction theory was used.

An initial wave packet in the coordinate representation is
described by

wsðx; y; t ¼ 0; x0; y0Þ

¼ 1

ð2pÞ1=2rq
exp �ðx� x0Þ2 þ ðy� y0Þ2

4r2
q

" #
; ð11Þ

where rq is its spatial standard deviation. On the other hand, the
initial wave packet in the angular representation is defined by

waðhx; hy; t ¼ 0; x0; y0Þ ¼
1

ð2pÞ1=2rh

exp � ipðx0hx þ y0hyÞ
�h

� �

� exp � h2x þ h2y
4r2

h

 !
; ð12Þ

which is obtained from the Fourier transform of Eq. (11), where

rh ¼ Dd=ð8 ln 2Þ1=2 is its angular standard deviation with Dd being
the initial beam FWHM. Parameters rq and rh are connected to
each other by the corresponding uncertainty principle, resulting
in the expression rqrh ¼ �h=ð2pÞ.

The final wave packet in the coordinate representation is
defined by the function wsðx; y; t; x0; y0Þ with tf ¼ mL=p, which is
obtained via Eq. (10). The equation is solved numerically [30].
We take that the computation domain is the region
�Dx=2 6 x 6 Dx=2 and �Dy=2 6 y 6 Dy=2 with Dx ¼ Dy ¼ 3Rn. The
spatial distribution of transmitted positrons is given as

Ysðx; yÞ ¼
X
x0 ;y0

cðx0; y0Þ wsðx; y; tf ; x0; y0Þ
�� ��2; ð13Þ

which is a weighted sum of the final positron spatial probability
functions over the chosen values of x0 and y0, with the pairs of val-
ues of x0 and y0 chosen within the region q 6 Rn � as. This is done as
in Ref. [17].

The final wave packet in the angular representation is described
by function waðhx; hy; tf ; x0; y0Þ, which is the positron wave function
in the channeling angle plane obtained from the Fourier transform
of wsðx; y; tf ; x0; y0Þ. The transformation is performed numerically.
The angular distribution of transmitted positrons is given as

Yaðhx; hyÞ ¼
X
x0 ;y0

cðx0; y0Þ waðhx; hy; tf ; x0; y0Þ
�� ��2; ð14Þ

which is the weighted sum of the final positron angular probability
functions over the chosen values of x0 and y0. It should be noted
that Ysðx; yÞ and Yaðhx; hyÞ, which correspond to the whole ensemble
of positrons, are cylindrically symmetric.

The exponential form of the function wsðx; y; tÞ is
wsðx; y; tÞ ¼ Aqðx; y; tÞ exp½iSquq ðx; y; tÞ=�h�; ð15Þ

where Aqðx; y; tÞ and Squq ðx; y; tÞ=�h are the amplitude and phase of the
function, respectively, determined by its real and imaginary parts.
Similarly, the exponential form of the function waðhx; hy; tÞ is
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waðhx; hy; tÞ ¼ Ahðhx; hy; tÞ exp½iSquh ðhx; hy; tÞ=�h�; ð16Þ
where Ahðhx; hy; tÞ and Squh ðhx; hy; tÞ=�h are the amplitude and phase of
the function, respectively, determined by its real and imaginary
parts. In accordance with a consideration contained in Ref. [31],
Squq ðx; y; tÞ and Squh ðhx; hy; tÞ in fact are the quantum spatial and angu-
lar Hamilton’s principal functions of a positron channeled in the
nanotube, respectively. One should note that these functions, which
correspond to one positron from the ensemble, are not cylindrically
symmetric.

3. Calculations and discussion

3.1. Classical rainbows

We have calculated and inspected the angular rainbow
diagrams of the positrons transmitted through the nanotube,
~hxðx; tf Þ, for nanotube lengths L ¼ 50–320 nm with a step of

10 nm. Fig. 1 gives the ~hxðx; tf Þ for L ¼ 320 nm. The initial positron
momentum vector is taken to be parallel to the nanotube axis, i.e.,
px0 ¼ py0 ¼ 0. This curve also represents the associated spatial rain-
bow diagram, ~xðhx; tÞ. The positions of the rainbow extrema in the
final transverse position (TP) plane are determined by the tangents
to the curve perpendicular to the x axis while the positions of the
rainbow extrema in the transmission angle (TA) plane are deter-
mined by the tangents to it perpendicular to the ~hx axis [17]. In this
case, there are two pairs of extrema in the final TP plane, desig-
nated as �1s and �2s, each of which represents a maximum and
minimum of the positron spatial transmission function, xðx0; tf Þ,
respectively. Hence, there are two circular rainbow lines in the
final TP plane. Analysis shows that the positron trajectories that
correspond to extrema �1s involve one deflection from the nan-
otube wall and the trajectories that correspond to extrema �2s

two deflections from the wall. Consequently, the former extrema
is associated with a classical spatial primary rainbow (SPR) and
the latter extrema with a classical spatial secondary rainbow (SSR).

Besides, there are two pairs of extrema in the TA plane, desig-
nated as �1a and �2a, each of which represents a maximum and
Fig. 1. Angular rainbow diagram of the positrons transmitted through the nanotube
of a length of L = 320 nm for px0 ¼ py0 ¼ 0. Points �1s and �2s belong to the classical
SPR and SSR, and �1a and�2a to the classical APR and ASR, respectively. Points �1sa

and �2sa designate the intersections of the curve with the ~hx axis off the origin and
�1as its intersections with the x axis off the origin.
minimum of the positron angular transmission function, hxðx0; tf Þ,
respectively. Thus, there are two circular rainbow lines in the TA
plane. The former extrema is associated with a classical angular
primary rainbow (APR) and the latter extrema with a classical
angular secondary rainbow (ASR).

One should observe that the curve in question intersects the ~hx
axis at the origin, a pair of points closer to the origin, �1sa, and a
pair of points farther from the origin, �2sa. Each point from the for-
mer pair lies between the points corresponding to the SPR and APR,
and each point from the latter pair between the points correspond-
ing to the SSR and ASR. On the other hand, the curve intersects the
x axis at the origin and a pair of other points, �1as. Each point from
the pair lies between the points corresponding to the APR and SSR.

Analysis has shown that in the case under consideration, the
angular rainbow diagram of the positrons channeled in the nan-
otube, ~hxðx; tÞ, evolves in the following way (see Fig. 1). The initial
curve lies on the x axis. Its evolution begins with its left and right
branches starting to bend upward and downward, respectively.
Then, the curve reaches points �1s, where the evolution direction
changes. The former branch continues rightward and upward,
and the latter branch leftward and downward. After that, the curve
passes through points �1sa and reaches points �1a, where the evo-
lution direction changes again. The former branch continues right-
ward and downward, and the latter branch leftward and upward.
In the further evolution, it passes through points �1as, reaches
points �2s, passes through points �2sa, and reaches points �2a.
This means that the sequence of appearance of rainbows in this
channeling process is: the SPR, APR, SSR, ASR, etc.

Fig. 2 gives the classical spatial Hamilton’s principal function of

transmitted positrons for L = 320 nm, Sclqðx; tf Þ, for px0 ¼ py0 ¼ 0. The
curve representing this function has two pairs of cusp singular
Fig. 2. Classical spatial Hamilton’s principal function of transmitted positrons for
L = 320 nm for px0 ¼ py0 ¼ 0 divided by �h. Points �1s and �2s are the cusp singular
points of the curve, �1a and �2a its inflection points, and �1sa and �2sa its crunode
singular points.



Fig. 3. Classical angular Hamilton’s principal function of transmitted positrons for
L = 320 nm for px0 ¼ py0 ¼ 0 divided by �h. Points �1a and �2a are the cusp singular
points of the curve, �1s and �2s its inflection points, and �1as its crunode singular
points.

Fig. 4. One-dimensional normalized spatial distribution of the positrons transmit-
ted through the nanotube of a length of L ¼ 50 nm described initially as an
ensemble of Gaussian wave packets. Maxima �1s0 belong to the principal SPR, and
maxima �1s1;�1s2 and �1s3 to the supernumerary SPRs.

Fig. 5. Two-dimensional representation of the amplitudes squared of the positron
wave functions in the final TP plane along the x axis for �Rn < x0 < Rn and y0 ¼ 0 in
the case of L = 50 nm and corresponding positron spatial transmission function.
Points �1s belong to the classical SPR while �1m0 designate the maxima of the
quantum mechanical distribution. The regions beyond the red lines correspond to
the spatial rainbow subensemble. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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points, two pairs of inflection points, and two crunode singular
points. The cusp singular points closer to the origin correspond
to the SPR, �1s, the cusp singular points farther from the origin
to the SSR, �2s, the inflection points closer to the origin to the
APR, �1a, and the inflection points farther from the origin to the
ASR, �2a. The crunode singular points, both lying at the origin, cor-
respond to the two pairs of points where the curve ~hxðx; tf Þ inter-
sects the ~hx axis off the origin, �1sa and �2sa (see Fig. 1).

The classical angular Hamilton’s principal function of transmit-

ted positrons for L = 320 nm, Sclh ðhx; tf Þ, for px0 ¼ py0 ¼ 0 is depicted
in Fig. 3. The curve representing this function has two pairs of cusp
singular points, two pairs of inflection points, and a crunode singu-
lar point. The cusp singular points closer to the origin correspond
to APR, �1a, the cusp singular points farther from the origin to
the ASR, �2a, the inflection points closer to the origin to the SPR,
�1s, and the inflection points farther from the origin to the SSR,
�2s. The crunode singular point corresponds to the pair of points
where curve ~hxðx; tf Þ intersects the x axis off the origin, �1as (see
Fig. 1).

3.2. Quantum rainbows

We are going to present here the cases of transmission of the
positrons through the nanotubes of lengths of L = 50, 100 and
250 nm. The initial positron beam is assumed to be an ensemble
of non-interacting Gaussian wave packets with an angular stan-
dard deviation of rh ¼ 0:1hc ¼ 0:73 mrad, giving a spatial standard
deviation of rq ¼ 0:19 nm. The initial number of positrons is
N = 301. In the cases of L = 50 and 100 nm, only the quantum SPR
effect is developed, while in the case of L = 250 nm, this is true
for the SPR, APR and SSR effects. In the case of L = 250 nm, we shall
describe only the APR effect.

3.2.1. Quantum spatial primary rainbows for L = 50 nm
Fig. 4 shows the one-dimensional normalized spatial distribu-

tion of transmitted positrons for L = 50 nm. It contains a pair of
strong maxima at �0.40 nm, and three pairs of weaker maxima
at �0.28 nm, �0.20 nm and �0.12 nm. Let us explain this
distribution.
Fig. 5 gives the positron spatial transmission function, xðx0; tf Þ,
in the case of L = 50 nm. It has a maximum and minimum, �1s,
at xs01 ¼ �0:54 nm, which are xs1 ¼ �0:44 nm, respectively,
belonging to the classical SPR. This means that for x0 close to xs01,



Fig. 6. One-dimensional representation of the amplitudes squared of the positron
wave functions in the final TP plane along the x axis for �Rn < x0 < Rn and y0 ¼ 0 in
the case of L = 50 nm. The curves designated by red color correspond to the spatial
rainbow subensemble. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

M. Ćosić et al. / Nuclear Instruments and Methods in Physics Research B 373 (2016) 52–62 57
the positrons concentrate in the regions just before xs1 going from
the origin. Also, there are no positrons in the regions after xs1. Thus,
the region before xs1 is the bright side of the rainbow and the region
after xs1 its dark side. This figure also contains the two-dimensional
representation of the amplitudes squared of the positron wave

functions in the final TP plane along the x axis, A2
qðx; y ¼ 0; tf Þ, for

�Rn < x0 < Rn and y0 ¼ 0, i.e., for q0 ¼ ðx20 þ y20Þ
1=2

< Rn and
u0 ¼ tan�1ðy0=x0Þ ¼ 0 and p, in the case of L = 50 nm. This two-

dimensional distribution has a pair of maxima, �1m0, at
xm0
0 ¼ �0:53 nm and xm0 ¼ �0:41 nm, respectively. For x0 close to
zero, these functions have the Gaussian shape with the width lar-
ger but close to the initial width. However, for x0 beyond �0.26 nm
going from the origin, each of these functions has a few clearly
observable maxima or shoulders – it is wrinkled. This is to be
attributed to the effect of internal focusing of the corresponding
wave packet. Namely, a ray within the wave packet entering the
nanotube at a smaller distance from its wall then the neighboring
ray can exit the nanotube at a point very close to the final point of
the neighboring ray. Hence, a few focal points appear on the x axis,
where the neighboring rays of the wave packet come very close to
each other (in the TP plane). The effect is analogous to the one
described by Born and Wolf [32]. The positions of the observed
maxima or shoulders coincide with the positions of these internal
focal points.

It should be emphasized that this explanation of the effect of
wave wrinkling is more general than the one given by Petrović
et al. [17]. It applies for all the values of x0 for which the effect
occurs while the previous explanation is restricted to the ones
close to xm0

0 .
The positions of the maxima or shoulders of one of the functions

A2
qðx; y ¼ 0; tf Þ are close to the positions of the corresponding max-

ima or shoulders of the other functions. Hence, one can say that the
wave packets wrinkle in a mutually coordinated way. We explain
this by the fact that all the projectiles interact with the same target.
For x0 close to xm0

0 , each function contains a pronounced maximum
close to xm0. The corresponding wave packet is wrinkled as if a bar-
rier exists at xm0, preventing its spreading after the barrier, and,
hence, causing its concentration just before the barrier. It is also
evident that the curve connecting the positions of the absolute

maxima of A2
qðx; y ¼ 0; tf Þ is close to the curve representing the

function xðx0; tf Þ. Therefore, we conclude that the above described
effects of wave wrinkling, coordination and concentration make a
quantum SPR effect. The observed virtual barrier represents the
boundary between the bright and dark sides of the rainbow.

Fig. 6 gives the one-dimensional representation of the functions

A2
qðx; y ¼ 0; tf Þ for�Rn < x0 < Rn and y0 ¼ 0 in the case of L = 50 nm.

In order to make the figure clearer, the number of curves is reduced
from N = 301 to 61. One can see that each of these curves that is
centered farther from the origin (for x0 beyond �0.26 nm) is wrin-
kled. The curves designated by red color correspond to the wave
packets belonging to a spatial rainbow subensemble that will be
specified later.

Fig. 7(a) gives the two-dimensional initial spatial distribution of
a positron assumed to be a Gaussian wave packet placed at point

(+0.53 nm, 0), where the distribution A2
qðx; y ¼ 0; tf Þ is maximal.

The resulting spatial distribution of the wave packet transmitted
through the nanotube of a length of L = 50 nm is given in Fig. 7
(b). It contains a strong maximum and a number of weaker max-
ima extending toward the nanotube axis – it is wrinkled.

Fig. 8 shows the classical spatial Hamilton’s principal function
of the positrons transmitted through the nanotube divided by
�h; Sclqðx; tf Þ=�h, in the case of L = 50 nm. The curve representing this
function has a pair of cusp singular points, �1s, at
xs1 ¼ �0:44 nm, corresponding to the maximum and minimum of
the function xðx0; tf Þ, respectively. It has three branches, joining
at the cusp singular points, which will be referred to as its horizon-
tal branch, and its right and left vertical branches.

Fig. 8 also gives the phases of the positron wave functions in the
final TP plane along the x axis, Squq ðx; y ¼ 0; tf Þ=�h, for �Rn < x0 < Rn

and y0 ¼ 0 in the case of L = 50 nm. The number of curves is 61,
instead of N = 301. It is evident that there are several groups of
curves representing these functions. The curves from each of these
groups extend together with the remaining curves in the directions
from the right nanotube wall, at þRn ¼ þ0:69 nm, to the right cusp
singular point, þ1s, and from the left wall, at �Rn ¼ �0:69 mm, to
the left singular point, �1s, and then separate from the remaining
curves and continue ‘‘parallel” to the right and left vertical

branches of the curve representing the function Sclqðx; tf Þ=�h, respec-
tively. Let us focus on the curves from the first group, which are
most numerous and separate first. They are designated by red
color. The percentage of curves from this group is 19.3% and the
corresponding values of x0 are beyond xr00 ¼ �0:54 nm going from
the origin (see Fig. 5). There are 21 additional groups of curves.
The percentages of curves from these groups are close to each
other as well as the corresponding intervals of values of x0, extend-
ing from xr00 toward the origin. The average percentage of curves
from these groups is 3.8% while the corresponding average interval
of values of x0 is 0.03 nm. If the number of shown curves were not
reduced, the figure would contain more curves from these groups.

The curves from the right or left subgroup of the first group are
close to each other, meaning that the corresponding wave packets
are close to being in phase with each other. This means that the
behavior of these wave packets is additionally coordinated.
Besides, these curves are close to the right or left vertical branch.
A detailed analysis of all the curves in the regions around the for-
mer cusp singular points, �1s, has shown that their envelope also
has a pair of cusp singular points, �1s0, at xs01 ¼ �0:40 nm, which
are close to xm0 (see Fig. 5). The ‘‘vertical” branches of the right
and left parts of the envelope are defined by the curves from the



Fig. 7. (a) Two-dimensional initial spatial distribution of a positron described as a
Gaussian wave packet placed at point (+0.53 nm, 0), and (b) resulting spatial
distribution of the positron transmitted through the nanotube of a length of =50 nm
graphed on a logarithmic scale.

Fig. 8. Phases of the positron wave functions in the final TP plane along the x axis
for �Rn < x0 < Rn and y0 ¼ 0 in the case of L = 50 nm – the gray and red curves, and
corresponding classical spatial Hamilton’s principal function divided by �h – the blue
curve. The curves designated by red color correspond to the spatial rainbow
subensemble. Points �1s are the cusp singular points of the classical curve. Points
�1s0 are the cusp singular points of the envelopes of the quantum mechanical
curves in the region around �1s , and �1s1;�1s2 and �1s3 are the common inflection
points of these curves that correspond to the rainbow subensemble. Inset: the
envelope of the quantum mechanical curves in the region around þ1s – the green
curve, with singular point þ1s0. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

58 M. Ćosić et al. / Nuclear Instruments and Methods in Physics Research B 373 (2016) 52–62
right and left subgroups of the first group, respectively, and its
‘‘horizontal” branch by the remaining curves. This is shown in
the inset of Fig. 8 for the singular point þ1s0. Thus, the latter singu-
lar points are the points of separation of the curves from the first
group from the remaining curves. A careful inspection of the curves
from the right and left subgroups of the first group after the sepa-
ration points has shown that each of them has three inflection
points, and that the positions of these points coincide with the
positions of the corresponding inflection points of the other curves
from the subgroup. The positions of these three pairs of common
inflection points are xs11 ¼ �0:27 nm, xs21 ¼ �0:18 nm and
xs31 ¼ �0:10 nm.

The same analyses have been performed for the wave packets
with q0 < Rn and the other values of u0, different from 0 and p.
Its conclusions coincide with those drawn from the analysis for
u0 ¼ 0 and p, with the values of xs01 ; x
s1
1 ; xs21 and xs31 coinciding or

being close to the ones obtained for u0 ¼ 0 and p.
Now, we can come back to the one-dimensional normalized

spatial distribution of transmitted positrons for L = 50 nm, given
in Fig. 4. The positions of the strong maxima coincide with �xs01 ,
and the positions of the weaker maxima are close to xs11 ; x

s2
1 and

xs31 . They are denoted as �1s0;�1s1;�1s2 and �1s3, respectively.
The small differences between the positions of the weaker maxima
and xs11 ; xs21 and xs31 , respectively, are attributed to the fact that the
distribution is generated with all the values of x0 and y0, rather that
with only the values x0 beyond xr00 and y0 ¼ 0. The strong maxima
belong to a principal SPR and the weaker maxima to three super-
numerary SPRs. The positions of the stronger maxima are the com-
mon positions of the points of separation of all the wave packets
from the first group. The positions of the weaker maxima are deter-
mined dominantly by the common positions of the inflection
points of the phases of all the wave packets from the first group.
The subensemble comprising the wave packets from the first group
has been named the spatial rainbow subensemble.
3.2.2. Quantum spatial primary rainbows for L = 100 nm
Fig. 9 shows the one-dimensional normalized spatial distribu-

tion of transmitted positrons for L = 100 nm. It contains a pair of
weaker maxima at �0.23 nm and a stronger maximum at the ori-
gin. The explanation of this distribution is the same as the one
already given for the distribution obtained for L = 50 nm.

Fig. 10 gives the function xðx0; tf Þ in the case of L = 100 nm. It
has a maximum and minimum, �1s, at xs01 ¼ �0:42 nm, which
are xs1 ¼ �0:31 nm, respectively, belong to the classical SPR. This

figure also contains the functions A2
qðx; y ¼ 0; tf Þ for �Rn < x0 < Rn

and y0 ¼ 0 in the case of L = 100 nm. This two-dimensional



Fig. 9. One-dimensional normalized spatial distribution of the positrons transmit-
ted through the nanotube of a length of L = 100 nm represented initially as an
ensemble of Gaussian wave packets. The weaker maxima are due to the principal
SPR combined with the third supernumerary SPR, �1s0 and �1s3, and the stronger
maximum is due to the first and second supernumerary SPRs, �1s1 and �1s2,
respectively.

Fig. 10. Two-dimensional representation of the amplitudes squared of the positron
wave functions in the final TP plane along the x axis for �Rn < x0 < Rnand y0 ¼ 0 in
the case of L = 100 nm and corresponding positron spatial transmission function.
Points �1s belong to the classical SPR while �1m0 designate the maxima of the
quantum mechanical distribution. The regions beyond the red lines correspond to
the spatial rainbow subensemble. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Phases of the positron wave functions in the final TP plane along the x axis
for �Rn < x0 < Rn and y0 ¼ 0 in the case of L = 100 nm – the gray and red curves, and
corresponding classical spatial Hamilton’s principal function divided by �h – the blue
curve. The curves designated by red color correspond to the spatial rainbow
subensemble. Points �1s are the cusp singular points of the classical curve. Points
�1s0 are the cusp singular points of the envelopes of the quantum mechanical
curves in the region around �1s , and �1s1;�1s2 and �1s3 are the common inflection
points of these curves that correspond to the rainbow subensemble. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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distribution has a pair of maxima, �1m0, at xm0
0 ¼ �0:42 nm and

xm0 ¼ �0:26 nm. Analysis has shown that the above described
effects of wave wrinkling, coordination and concentrate appear
in this case as well, and that they make a quantum SPR effect.
The observed virtual barrier, at xm0, is the boundary between the
bright and dark sides of the rainbow.

Fig. 11 shows the function Sclqðx; tf Þ=�h in the case of L = 100 nm.
The curve representing this function has a pair of cusp singular
points, �1s, at xs1 ¼ �0:31 nm, and one crunode singular point, at
the origin (�1sa). The cusp singular points correspond to the max-
imum and minimum of the function xðx0; tf Þ, respectively, and the
crunode singular point corresponds to a pair of points where the
curve representing the function ~hxðx; tf Þ intersects the ~hx axis off
the origin (see Fig. 1).

Fig. 11 also gives the functions Squq ðx; y ¼ 0; tf Þ=�h for
�Rn < x0 < Rn and y0 ¼ 0 in the case of L = 100 nm. The number
of curves is 61, instead of N = 301. The curves representing these
functions that belong to the first group, i.e., that correspond to
the wave packets from the spatial rainbow subensemble are desig-
nated by red color. The values of x0 in question are beyond
xr00 ¼ �0:39 nm going from the origin (see Fig. 10). The envelope
of all the curves in the regions around the former cusp singular
points, �1s, also has a pair of cusp singular points, �1s0, at
xs01 ¼ �0:26 nm, coinciding with xm0 (see Fig. 10). These are the
points of separation of the curves from the first group from the
remaining curves. Each of the curves from the right and left sub-
group of the first group has three inflection points after the separa-
tion point. The positions of the three pairs of common inflection
points of these curves are xs11 ¼ �0:04 nm, xs21 ¼ �0:09 nm and
xs31 ¼ �0:22 nm. The values of xs01 ; x

s1
1 ; x

s2
1 and xs31 obtained for the

wave packets with q0 < Rn and the other values of u0, different
from 0 and p, coincide or are close to the ones obtained for
u0 ¼ 0 and p.

Comparison of the positions of the maxima of the one-
dimensional normalized spatial distribution of transmitted posi-
trons for L = 100 nm, given in Fig. 9, with xs01 ; x

s1
1 ; x

s2
1 and xs31 leads
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to the conclusion that the weaker maxima are to be attributed to
the principal SPR combined with the third supernumerary SPR,
�1s0 and �1s3, and that the stronger maximum is to be attributed
to the first and second supernumerary SPRs, �1s1 and �1s2,
respectively.
Fig. 13. Two-dimensional representation of the amplitudes squared of the positron
wave functions in the TA plane along the hx axis for �Rn < x0 < Rn and y0 ¼ 0 in the
case of L = 250 nm and corresponding positron angular transmission function.
Points �1a belong to the classical APR, while �1m0 and �1m1 designate the maxima
of the quantum mechanical distribution. The regions beyond the red lines
correspond to the angular rainbow subensemble. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)
3.2.3. Quantum angular primary rainbows for L = 250 nm
Fig. 12 shows the one-dimensional normalized angular distri-

bution of transmitted positrons for L = 250 nm. One can view it
as a superposition of a strong bell-shaped component centered at
the origin, and a component consisting of two pairs of maxima at
�2.3 mrad and �1.0 mrad, with the second pair of maxima seen
in the distribution as a pair of shoulders. We shall explain this dis-
tribution in a way analogous to the one already given for the dis-
tributions obtained for L = 50 and 100 nm.

Fig. 13 gives the positron angular transmission function,
hxðx0; tf Þ, in the case of L = 250 nm. It has a maximum and mini-
mum, �1a, at xa01 ¼ �0:54 nm, which are hax1 ¼ �3:8 mrad, respec-
tively, belonging to the classical APR. This means that for x0 close
to xa01, the positrons concentrate in the regions just before hax1 going
from the origin. Also, there are no positrons in the regions after hax1.
Thus, the region before hax1 is the bright side of the rainbow and the
region after hax1 its dark side. This figure also contains the two-
dimensional representation of the amplitudes squared of the posi-
tron wave functions in the TA plane along the hx axis,

A2
hðhx; hy ¼ 0; tf Þ, for �Rn < x0 < Rn and y0 ¼ 0 in the case of

L = 250 nm. This two-dimensional distribution has two pairs of
maxima, �1m0 and �1m1, at xm0

0 ¼ �0:46 nm and hm0
x ¼ �2:8 mrad,

and xm1
0 ¼ �0:11 nm and hm1

x ¼ �0:5 mrad, respectively. For x0
close to zero, these functions have the Gaussian shape with the
width smaller but close to the initial width. However, for x0 beyond
�0.33 nm going from the origin, each of these functions has a few
clearly observable maxima or shoulders – it is wrinkled. This is to
be attributed to the effect of internal focusing of the corresponding
Fig. 12. One-dimensional normalized angular distribution of the positrons trans-
mitted through the nanotube of a length of L = 250 nm represented initially as an
ensemble of Gaussian wave packets. Maxima �1a0 belong to the principal APR and
shoulders �1a1 to the first supernumerary APR.
wave packet. Namely, a ray within the wave packet entering the
nanotube at a larger angle relative to its wall than the neighboring
ray can exit the nanotube at an angle very close to the final angle of
the neighboring ray. Hence, a few focal points appear on the hx axis,
where the neighboring rays of the wave packet come very close to
each other (in the TA plane) [32]. The positions of the observed
maxima or shoulders coincide with the positions of these internal
focal points.

The positions of the maxima or shoulders of one of the functions

A2
hðhx; hy ¼ 0; tf Þ are close to the positions of the corresponding

maxima or shoulders of the other functions. This means that the
wave packets wrinkle in a mutually coordinated way. For x0 close
to xm0

0 , each function contains a pronounced maximum at hm0
x .

The corresponding wave packet is wrinkled as if a barrier exists
at hm0

x , causing its concentration just before the barrier. One can
also see that the curve connecting the positions of the absolute

maxima of A2
hðhx; hy ¼ 0; tf Þ is close to the curve representing the

function hxðx0; tf Þ. Thus, the conclusion is that the above described
effects of wave wrinkling, coordination and concentration make a
quantum APR effect. The observed virtual barrier represents the
boundary between the bright and dark sides of the rainbow.

Fig. 14(a) gives the two-dimensional initial angular distribution
of a positron assumed to be a Gaussian wave packet placed at point

(+0.46 mrad, 0), where the distribution A2
hðhx; hy ¼ 0; tf Þ is maximal.

The resulting angular distribution of the wave packet transmitted
through the nanotube of a length of L = 250 nm is given in Fig. 14
(b). It contains a strong maximum and a number of weaker max-
ima extending toward the origin and beyond – it is wrinkled.

Fig. 15 shows the classical angular Hamilton’s principal function
of the positrons transmitted through the nanotube divided by
�h; Sclh ðhx; tf Þ=�h, in the case of L = 250 nm. The curve representing this
function has a pair of cusp singular points, �1a, at hax1 ¼ �3:8 nm,
and one crunode singular point, at the origin (�1as). The cusp
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singular points correspond to the maximum and minimum of the
function hxðx0; tf Þ, respectively, and the crunode singular point
corresponds to a pair of points where the curve representing the
function ~hxðx; tf Þ intersects the x axis off the origin (see Fig. 1).

The curve representing Sclh ðhx; tf Þ=�h has three branches, joining at
the cusp singular points, which will be referred to as its horizontal
branch, and its right and left vertical branches.

Fig. 15 also gives the phases of the positron wave functions in
the TA plane along the hx axis, Squh ðhx; hy ¼ 0; tf Þ=�h, for
�Rn < x0 < Rn and y0 ¼ 0 in the case of L = 250 nm. The number
of curves is 61, instead of N = 301. One can see that there are
several groups of curves representing these functions. The curves
from each of these groups extend together with the remaining
curves in the directions from the right limit, determined by
þhc ¼ þ7:3 mrad, to the right cusp singular point, þ1a, and from
the left limit, determined by �hc ¼ �7:3 mrad, to the left singular
point, �1a, and then separate from the remaining curves and
Fig. 14. (a) Two-dimensional initial angular distribution of a positron described as a
Gaussian wave packet placed at point (+0.46 nm, 0), and (b) resulting angular
distribution of the positron transmitted through the nanotube of a length of
L = 250 nm graphed on a logarithmic scale.

Fig. 15. Phases of the positron wave functions in the TA plane along the hx axis for
�Rn < x0 < Rn and y0 ¼ 0 in the case of L = 250 nm – the gray and red curves, and
corresponding classical angular Hamilton’s principal function divided by �h – the
blue curve. The curves designated by red color correspond to the angular rainbow
subensemble. Points �1a are the cusp singular points of the classical curve. Points
�1a0 are the cusp singular points of the envelopes of the quantum mechanical
curves in the region around �1a , and�1a1 are the common inflection points of these
curves that correspond to the rainbow subensemble. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
continue ‘‘parallel” to the right and left vertical branches of the

curve representing the function Sclh ðhx; tf Þ=�h, respectively. We shall
focus on the curves from the first group, which separate first. They
are designated by red color. The corresponding values of x0 are
beyond xr00 ¼ �0:59 nm going from the origin (see Fig. 13). The
subensemble comprising the wave packets from the first group is
called the angular rainbow subensemble.

The curves from the right or left subgroup of the first group are
close to each other, meaning that the corresponding wave packets
are close to being in phase with each other. This means that the
behavior of these wave packets is additionally coordinated.
Besides, these curves are close to the right or left vertical branch.
A detailed analysis of all these curves in the regions around the for-
mer cusp singular points, �1a, has shown that their envelope also
has a pair of cusp singular points, �1a0, at ha0x1 ¼ �3:00 nm, being
close to �hm0

x (see Fig. 13). The ‘‘vertical” branches of the right
and left envelopes are defined by the curves from the right and left
subgroups of the first group, respectively, and their ‘‘horizontal”
branches by the remaining curves. This means that the latter sin-
gular points are the points of separation of the curves from the first
group from the remaining curves. A careful inspection of the curves
from the right and left subgroups of the first group after the sepa-
ration point shows that each of them has several inflection points,
and that the positions of these points coincide with the positions of
the corresponding inflection points of the other curves from the
subgroup. We shall take into account here only the right and left
inflection points that lie next to the latter singular points. The posi-
tions of the corresponding pair of common inflection points are
ha1x1 ¼ �1:5 mrad. The values of ha0x1 and ha1x1 obtained for the wave
packets with q0 < Rn and the other values of u0, different from 0
and p, coincide or are close to the ones obtained for u0 ¼ 0 and p.

We can now come back to the one-dimensional normalized
angular distribution of transmitted positrons for L = 250 nm, given
in Fig. 12. Its strong bell-shaped component corresponds to the

maximum of the distribution A2
h ðhx; hy ¼ 0; tf Þ at xm1

0 and hm1
x ;�1m1
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(see Fig. 13). Since the positions of the maxima and shoulders of
the distribution are close to ha0x1 and ha1x1, they are denoted as �1a0

and �1a1, respectively. The small differences between the positions
of the maxima and shoulders and ha0x1 and ha1x1 , respectively, are
attributed to the fact that the distribution is generated with all
the values of x0 and y0, rather then with only the values x0 beyond
xr00 and y0 ¼ 0. The maxima belong to a principal APR and the
shoulders to a supernumerary APR. The positions of the maxima
are the common positions of the points of separation of all the
wave packets from the angular rainbow subensemble. The posi-
tions of the shoulders are determined dominantly by the common
positions of the chosen inflection points of the phases of all the
wave packets from the angular rainbow subensemble. It has been
found that the other inflection points of the phases of the wave
packets from the angular rainbow subensemble are connected to
the weak supernumerary APRs, and to the principal and supernu-
merary ASRs, not being well-developed. The maxima of the distri-
bution corresponding to the ASRs, lying in the regions after about
�5 mrad going from the origin, can be seen in the figure.
4. Conclusions

In the classical part of the study, we have analyzed the angular
rainbow diagram of the positrons transmitted through the nan-
otube of a length of L = 320 nm for px0 ¼ py0 ¼ 0, and demonstrated
that in this case, a SPR, APR, SSR and ASR occur. The corresponding
classical spatial and angular Hamilton’s principal functions have
been presented as well.

In the quantum mechanical part of the study, we have shown
and explained in detail the spatial distributions of the positrons
transmitted through the nanotubes of lengths of L = 50 and
100 nm. The initial positron beam has been represented as an
ensemble of non-interacting Gaussian wave packets. Analysis of
the amplitudes squared of the positron wave functions in the final
TP plane for different values of the components of the initial posi-
tron position vector has demonstrated that each of these functions
has a few maxima or shoulders, i.e., it is wrinkled. This is attributed
to the appearance of a few focal points on the observation axis in
the final TP plane, where the neighboring rays of the wave packet
come very close to each other. Besides, we have found that the
wave packets wrinkle in a mutually coordinated way. This has
been explained by the fact that all the projectiles interact with
the same target. In addition, each wave packet is wrinkled as if a
barrier exists at a certain point on the observation axis, preventing
its spreading after the barrier, and, hence, causing its concentration
just before the barrier. The conclusion has been that the effects of
wave wrinkling, coordination and concentration make a quantum
SPR effect. The observed virtual barrier represents the boundary
between the bright and dark sides of the rainbow.

We have also explored in detail the phases of the positron wave
functions in the final TP plane for different values of the components
of the initial positron position vector in the cases of L = 50 and
100 nm. It has been found that the envelopes of the curves repre-
senting these functions have the cusp singular points, and that these
points determine the position of the principal SPR. Besides, the
curves representing these functions have the common inflection
points, which determine the positions of the supernumerary SPR.
The quantum mechanical part of the study has also included a
detailed investigation of the angular distribution of the positrons
transmitted through the nanotubes of a length of L = 250 nm.
Again, the initial positron beam has been represented as an ensem-
ble of non-interacting Gaussian wave packets. The analysis has
been performed in a way analogous to the one applied in the con-
siderations of the spatial distributions of transmitted positrons. As
in these considerations, we have observed the effects of wave
wrinkling, coordination and concentration, and concluded that
they make a quantum APR effect.
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A. Osman, Phys. Rev. B 86 (2012) 205426.
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