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This study provides a way to produce very accurate ion–atom interaction potentials. We present the
high-resolution measurements of angular distributions of protons of energies between 2.0 and 0.7 MeV
channeled in a 55 nm thick (0 01) silicon membrane. Analysis is performed using the theory of crystal
rainbows in which the Molière’s interaction potential is modified to make it accurate both close to the
channel axis and close to the atomic strings defining the channel. This modification is based on adjusting
the shapes of the rainbow lines appearing in the transmission angle plane, with the resulting theoretical
angular distributions of transmitted protons being in excellent agreement with the corresponding exper-
imental distributions.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Axial ion channeling is the passage of energetic ions through
axial crystal channels [1–4], with their trajectories determined by
the interaction with crystal atoms. The most frequently used
ion–atom interaction potential in treating atomic collisions in
solids is that proposed by Ziegler, Biersack & Littmark (ZBL) [5–
7]. The other frequently used interaction potential in the field is
that derived by Molière [8]. However, the problem of accurate
determination of such a potential at small and large ion–atom dis-
tances remains acute. Its proper solution will definitively represent
an important step forward in many fields, e.g., it will ensure more
accurate prediction of impurity concentration profiles during ion
implantation processes [9–11], and enable more accurate determi-
nation of such profiles [10–12].

Using ion–molecule scattering theory, Nešković [13] and
Nešković & Perović [14] developed a model of axial ion channeling
in thin crystals, showing that a rainbow occurred. Analogous to
scattering of sunlight from water droplets [15,16], the rainbow
clearly divided the angular distribution of transmitted ions into
the bright and dark parts. In Ref. [17], the model was generalized
to be valid for thicker crystals as well. Thus, the theory of crystal
rainbows was formulated, allowing accurate investigation of ion
channeling in crystals and nanotubes [18].
2. Measurements of crystal rainbows

The crystal rainbow effect was first observed experimentally by
Krause et al. [19], using protons of an energy of 7 MeV transmitted
through (001) and (011) silicon crystals that were 140 and
198 nm thick, respectively. The corresponding values of the
reduced crystal thickness, defined as K = fkL/v0, where L is the crys-
tal thickness, v0 the initial ion velocity, and fk the frequency of ion
motion close to the channel axis, were 0.23 and 0.24, respectively.
Since both values of K were below 0.25, when a majority of ions
make less than a quarter of an oscillation around the channel cen-
ter, the results were analyzed and interpreted using the model of
crystal rainbows [13,14]. The authors used the Lindhard’s interac-
tion potential [2].

The same group performed another measurement of crystal
rainbows [20], using 2–9 MeV protons and 6–30 MeV C4+, C5+ and
C6+ ions transmitted through 179 and 190 nm thick (001) silicon
crystals. For protons, the corresponding values of K were from
0.29 to 0.66, and for carbon ions, they were from 0.29 to 0.85.
The results were successfully explained using the LAROSE
three-dimensional simulation code [3,21] with the Molière’s inter-
action potential [8]. The authors also analyzed the periodicity of
evolution of the whole angular distribution of channeled ions
and found that it could be investigated with respect to K, in spite
of the fact that the parameter was determined from the
second-order terms of the Taylor expansion of the ion–crystal con-
tinuum interaction potential close to the axis. They concluded that
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the evolution of the angular distribution was to be divided into
cycles. The first cycle lasts for K between 0 and 0.5, the second
cycle for K between 0.5 and 1, and so on.

However, in both experiments, the measurement resolution
was not sufficiently high to observe fine structure of the angular
distributions of transmitted ions due to inability to provide thinner
silicon crystals. Recently, a new silicon crystal fabrication process
enabled the production of ultra-thin (001) silicon membranes of
a thickness of 55 nm with a surface roughness of 0.4 nm [22].
Those membranes were used in the high-resolution channeling
measurements with a 2.0 MeV proton microbeam to study the
crystal rainbow effect as well as the doughnut effect [22–25] for
the major crystallographic directions. The corresponding value of
K along the [001] direction was 0.12. The same procedure was
used to measure the channeling patterns for the minor crystallo-
graphic directions [26]. The results were analyzed using the FLUX
three-dimensional simulation code [27,28] with the ZBL interac-
tion potential [5–7]. The code uses the binary collision approxima-
tion and accounts for the thermal vibrations of crystal atoms and
the collisions of protons with crystal electrons.

3. Theory of crystal rainbows

Let us now briefly describe the relevant part of the theory of
crystal rainbows [17]. We consider that the z axis of the reference
frame, being the longitudinal axis, coincides with the channel axis
and that its origin lies in the entrance plane of the crystal. The x
and y axes of the reference frame, being the transverse axes, are
the vertical and horizontal axes, respectively. The initial proton
velocity vectors are taken to be parallel to the channel axis. We
introduce the mapping of the impact parameter (IP) plane to the
transmission angle (TA) plane,

hx ¼ hxðx0; y0;KÞ and hy ¼ hyðx0; y0;KÞ; ð1Þ

where x0 and y0 are the transverse components of the initial ion
position vector, i.e., the components of its impact parameter vector,
and hx and hy are the components of the final ion channeling angle,
i.e., the components of its transmission angle. To obtain hx and hy,
the ion equations of motion are solved. It is assumed that the
ion–crystal interaction can be treated classically [1–4]. One applies
either the continuum approximation [2] or the binary collision
approximation [3]. The thermal vibrations of crystal atoms can be
included in the calculations.

Since the components of the ion channeling angle remain small
during the whole channeling process [1–4], the ion differential
transmission cross section is

rðx0; y0;KÞ ¼
1

jJhðx0; y0;KÞj
; ð2Þ

where

Jhðx0; y0;KÞ ¼ @x0 hx@y0
hy � @y0

hx@x0 hy ð3Þ

is the Jacobian of functions hx(x0, y0, K) and hy(x0, y0, K). Hence,
equation

Jhðx0; y0;KÞ ¼ 0 ð4Þ

gives the rainbow lines in the IP plane. The images of these lines
determined by functions hx(x0, y0, K) and hy(x0, y0, K) are the rain-
bow lines in the TA plane.

The theory of crystal rainbows was employed to perform a
detailed morphological study of the high-resolution channeling
measurements using 2.0 MeV protons and a 55 nm thick (001) sil-
icon membrane tilted away from the [001] direction [25]. It was
proved that the doughnut effect was to be considered as the rain-
bow effect occurring with tilted crystals.
4. Interaction potentials

In the field of atomic collisions in solids, the ion–atom interac-
tion potential is of the screened Coulomb type [9]. It can be
expressed as V(R) = V0(R)v(R), where V0(R) = Z1Z2e2/R, Z1 and Z2

are the atomic numbers of the ion and crystal atom, respectively,
e is the elementary charge, R is the ion–atom distance, and v(R)
is the ion–atom screening function, describing the effect of elec-
tron screening of the atomic nuclei. The screening function is
determined using the Thomas–Fermi model or a Hartree–Fock
method. In this study, we used the Molière’s interaction potential
[8], which had been derived from the Thomas–Fermi model, and
the ZBL potential, which had been obtained applying an appropri-
ate Hartree–Fock method to 261 atomic pairs [5–7]. The ZBL poten-
tial is often designated as the universal potential.

The screening function of the ZBL potential reads

vZBLðRÞ ¼
X4

i¼1

ai exp � biR
aZBL

� �
; ð5Þ

where

aZBL ¼
9p2=128
� �1=3

Zp
1 þ Zp

2

a0 ð6Þ

is the ZBL screening radius, a0 is the Bohr radius, and (ai) = (0.1818,
0.5099, 0.2802, 0.02817), (bi) = (3.2, 0.9423, 0.4028, 0.2016) and
p = 0.23 are the fitting parameters [5–7].

The commonly used form of the screening function of the
Molière’s potential is

vMðRÞ ¼
X3

i¼1

ci exp � diR
aF

� �
; ð7Þ

where

aF ¼
9p2=128
� �1=3

Z1=2
1 þ Z1=2

2

� �2=3 a0 ð8Þ

is the Firsov screening radius, and (ci) = (0.10, 0.55, 0.35) and
(di) = (6, 1.2, 0.3) are the fitting parameters [8,29]. We denote it as
the M(aF) potential.

The parameters of the ZBL potential as well as of the M(aF)
potential were determined to make them accurate dominantly
for small ion–atom distances. In analyzing their experimental
results, Krause et al. [20] concluded that they were better repro-
duced by the Molière’s potential with the Thomas–Fermi screening

radius, being aTF = 9p2=128
� �1=3

=Z1=3
2 a0, than by the M(aF) potential.

We denote it as the M(aTF) potential. This conclusion was attribu-
ted to the fact that each recorded angular distribution of transmit-
ted ions was generated by the ions moving close to the channel
axis, i.e., far from the atomic strings defining the channel. One can-
not expect a potential that has proven accurate close to the atoms
of the strings, i.e., for small ion–atom distances, like the ZBL or
M(aF) potential, to be accurate close to the channel axis, i.e., for
large ion–atom distances, where many atoms influence the ion
propagation. The M(aTF) potential can be written in a form depend-
ing on parameter aF, rather than on aTF, with parameters (di) chan-
ged to ðdc

i Þ = (diaF/aTF). For Z1 = 1 and Z2 = 14, ðdc
i Þ = (5.124, 1.025,

0.2562). We denote this potential as the Mc(aF) potential.
The subject of this study is a sequence of high-resolution mea-

surements performed with 2.0, 1.5, 1.0 and 0.7 MeV focused proton
microbeams channeled in a 55 nm thick (001) silicon membrane.
Fig. 1 shows the measured angular distributions of transmitted
protons of energies of 2.0 and 0.7 MeV together with the corre-
sponding distributions generated using a simulation code based
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Fig. 1. (a) Experimental angular distributions of 2.0 and 0.7 MeV protons transmitted through a 55 nm thick (001) silicon membrane. (b) Corresponding theoretical
distributions obtained with the ZBL interaction potential. (c) Corresponding theoretical distributions generated with the M(aTF) potential.
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on the continuum approximation [17] with two proton–atom
interaction potentials – the ZBL and M(aTF) potentials. The corre-
sponding values of K calculated for the ZBL potential were 0.12
and 0.21, respectively. These experimental distributions, as well
as the remaining ones given in Fig. 4b, were recorded by pho-
tographing a highly sensitive aluminum-coated YAG scintillator
screen placed downstream of the crystal [22]. The technique did
not make possible the extraction of accurate yields of transmitted
protons along different lines on the screen in order to compare
them to the corresponding theoretical yields. The only possibility
was to compare the shapes and extents of the corresponding parts
of the experimental and theoretical distributions, i.e., to perform a
morphological comparison of the distributions. The simulation
code took into account the thermal vibrations of crystal atoms
but not the collisions of protons with crystal electrons. We found
that the contribution of the latter effect to the shapes of the distri-
butions was minor. The number of atomic strings included in the
calculations was 36, i.e., we took into account the strings lying on
the three nearest (relative to the channel axis) square coordination
lines. The central part of each theoretical distribution obtained for
an energy of 2.0 MeV is in the shape of a cusped square with four
maxima lying on the apices of the cusps. However, the extent of
this part of the distribution obtained with the M(aTF) potential is
larger than the extent of the part of the distribution generated with
the ZBL potential. The central part of the corresponding experi-
mental distribution also has the shape of a cusped square. Its
extent is closer to the extent of the central part of the distribution
generated with the M(aTF) potential. The peripheral part of each
theoretical distribution obtained for this energy has the shape of
a line with four pairs of cusps. The extent of the peripheral part
of the corresponding measured distribution is closer to the extent
of the peripheral part of the distribution obtained with the ZBL
potential.

The theoretical distribution depicted in Fig. 1 obtained for a
proton energy of 0.7 MeV with the ZBL potential also has the shape
of a cusped square with four maxima lying on the apices of the
cusps. In addition, it has an internal structure composed of four
cusped isosceles triangles joined at the origin with four pairs of
maxima lying on the apices of the peripheral cusps and a maxi-
mum at the origin. The corresponding theoretical distribution gen-
erated with the M(aTF) potential has approximately the shape of a
square with four stronger maxima lying on lines hx = 0 and hy = 0,
and four weaker ones lying on lines hy = ±hx. The corresponding
experimental distribution has approximately the shape of a square
too, being closer to the theoretical distribution obtained with the
M(aTF) potential. Also, it does not have a maximum at the origin,
like the theoretical distribution obtained with the M(aTF) potential
and unlike the distribution generated with the ZBL potential.

On the basis of these comparisons, we assume that we can mod-
ify the Mc(aF) potential and make it accurate close to the channel
axis but without compromising its accuracy close to the atomic
strings. We shall construct such a potential and employ it for anal-
ysis of the above mentioned sequence of high-resolution channel-
ing measurements. The construction will be based on adjusting the
shapes of the rainbow lines in the TA plane by a minimal modifica-
tion of the Mc(aF) potential. This decision is based on the
well-established morphological fact that an angular distribution
of transmitted ions, generated for a proton energy, crystal thick-
ness and crystal tilt angle, and its evolution with these parameters
are fully determined by the associated rainbow pattern in the TA
plane and its evolution [17,18,25]. The resulting potential will be
denoted as the rainbow potential. Fig. 2 gives the dependences of
the ZBL and M(aTF) potentials on the proton–atom distance. The
inset shows the three components of the Mc(aF) potential, to be
modified in order to obtain the rainbow potential.

The construction of the rainbow potential is performed for a
proton energy of 2.0 MeV since in this case, two well-separated
rainbow lines appear in the IP plane [25]. This is shown in Fig. 3a
for the ZBL and M(aTF) potentials. The lines were calculated apply-
ing the continuum approximation with the thermal vibrations of



Fig. 2. Dependences of the ZBL, M(aTF) and rainbow interaction potentials on the
proton–atom distance – black, blue and red lines, respectively. Inset: the compo-
nents of the Mc(aF) potential and the second component of the rainbow potential as
functions of the proton–atom distance. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

(a)

(b)

Fig. 3. (a) Rainbow patterns in the IP plane for 2.0 MeV protons transmitted
through a 55 nm thick (001) silicon membrane for the ZBL, M(aTF) and rainbow
interaction potentials – black, blue and red lines, respectively; the blue line close to
the origin is covered by the red line. The blue full circles represent the atomic
strings. (b) Associated rainbow patterns in the TA plane; the blue line close to the
origin is covered by the red line. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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crystal atoms included [17]. The number of atomic strings included
in the calculations was 36. The first line lies close to the channel
center and the second one close to the atomic string. The associ-
ated rainbow lines in the TA plane are depicted in Fig. 3b. We
emphasize that the crystals used by Krause et al. [19,20] were
not sufficiently thin for two such lines to occur in the IP plane.
We now focus on points 1 and 2 in the IP plane, belonging to the
first and second rainbow lines, and on points 10 and 20 in the TA
plane, being the images of points 1 and 2, respectively. Analysis
showed that the positions of points 10 and 20 were not sensitive
to changes of parameter dc

1, were sensitive to changes of parameter
dc

2, and were very sensitive to changes of parameter dc
3. Taking

those findings into account, we chose to keep parameters (ci), dc
1

and dc
3 fixed and change parameter dc

2 with the objectives of: (i)
moving point 10 corresponding to the Mc(aF) potential to minimize
its distance from point 10 corresponding to the M(aTF) potential,
and (ii) moving point 20 corresponding to the Mc(aF) potential to
minimize its distance from point 20 corresponding to the ZBL
potential. In fact, we minimized the sum of squares of the relative
distances between points 10 and between points 20. As a result,
parameter dc

2 was modified from 1.025 to 1.828. The corresponding
component of the rainbow potential is given in the inset of Fig. 2.
Thus, the rainbow potential is defined by Eqs. (7) and (8) with
parameters (di) replaced by ðdr

i Þ = (5.124, 1.828, 0.2562). This
potential is presented in Fig. 2, and the associated rainbow lines
in the IP and TA planes are shown in Fig. 3a and b, respectively.
The first rainbow line in the TA plane generated with the rainbow
potential practically coincides with the first rainbow line gener-
ated with the M(aTF) potential, and the second rainbow line in this
plane obtained with the rainbow potential is very close to the sec-
ond rainbow line obtained with the ZBL potential.

One should mention here that if the adjusting of the shapes of
the rainbow lines in the TA plane were performed differently,
e.g., by changing more than one parameter of the Mc(aF) potential,
the resulting rainbow potential would be different. However, our
current experience in applying the method tells that these differ-
ences are minor.

Fig. 4a and b depict the rainbow patterns in the IP and TA planes
for proton energies of 2.0, 1.5, 1.0 and 0.7 MeV obtained with the
rainbow potential, respectively. The corresponding values of K
were 0.16, 0.19, 0.23 and 0.28. The patterns were calculated apply-
ing the continuum approximation with the thermal vibrations of
crystal atoms included [17]. The number of atomic strings included
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Fig. 4. (a) Rainbow patterns in the IP plane for 2.0, 1.5, 1.0 and 0.7 MeV protons transmitted through a 55 nm thick (001) silicon membrane generated with the rainbow
interaction potential. (b) Corresponding experimental angular distributions of transmitted protons and the associated rainbow patterns in the TA plane. (c) Corresponding
theoretical distributions generated using the FLUX simulation code with the rainbow potential.
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in the calculations was 36. As already stated, for an energy of
2.0 MeV, there are two rainbow lines in the IP plane, lying close
to the channel center and close to the atomic string. The associated
rainbow pattern in the TA plane comprises a cusped square, being
the image of the rainbow line in the IP plane close to the channel
center, and a line with four pairs of cusps, being the image of the
rainbow line in the IP plane close to the atomic string. The rainbow
patterns in the IP and TA planes for an energy of 1.5 MeV are sim-
ilar to those for an energy of 2.0 MeV with the rainbow lines in
both planes lying closer to each other. The rainbow pattern in
the IP plane for an energy of 1.0 MeV contains six lines. There are
two equivalent quasi-rectangular lines connecting the neighboring
channels, i.e., lying across the channel walls, and four equivalent
quasi-elliptical lines lying close to the atomic string. There is no
line around the channel center. The associated rainbow pattern
in the TA plane contains two crossed cusped rectangular lines,
being the images of the two quasi-rectangular lines in the IP plane,
and four cusped isosceles triangles, being the images of the four
quasi-elliptical lines in the IP plane. For an energy of 0.7 MeV, there
are two equivalent pairs of quasi-elliptical rainbow lines in the IP
plane lying in the neighboring channels close to the channel walls
and four equivalent rainbow points in the IP plane lying close to
the atomic string. Again, there is no line around the channel center.
The associated rainbow pattern in the TA plane comprises four
cusped isosceles triangles, being the images of the two pairs of
quasi-elliptical lines in the IP plane, and four rainbow points, being
the images of the four points in the IP plane. In all these cases, the
inner side of each rainbow line in the TA plane is the bright side of
the rainbow while its outer side is the dark side of the rainbow. It
should be mentioned that for an energy of 0.7 MeV, there is no line
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Fig. 5. (a) Projections of five typical trajectories of 2.0 MeV protons transmitted
through a 55 nm thick (001) silicon membrane on the xz plane calculated for the
rainbow interaction potential. (b) Associated projections of the proton trajectories
on the yz plane. Inset: the initial points of the proton trajectories.
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in the TA plane around the origin, which explains the above men-
tioned fact that the corresponding experimental distribution does
not have a maximum at the origin.

Fig. 4b also gives the experimental angular distributions of
transmitted protons for energies of 2.0, 1.5, 1.0 and 0.7 MeV. The
corresponding rainbow patterns generated with the rainbow
potential fully determine the distributions – they appear as the
‘‘skeletons’’ of the distributions. A careful inspection and compar-
ison of the measured distributions and rainbow patterns demon-
strated excellent agreement, in spite of the fact that the rainbow
patterns were obtained using the continuum approximation [2]
with the thermal vibrations of crystal atoms included but with
the focusing of the incident proton beam, the collisions of protons
with crystal electrons, and crystal defects neglected. Fig. 4c depicts
the corresponding distributions generated using the FLUX simula-
tion code [27,28] with the rainbow potential. The number of
atomic strings included in the calculations was 36. A comparison
of the measured and simulated distributions also demonstrated
excellent agreement. The simulated distributions did not take into
account the focusing of the incident proton beam and crystal
defects. On the basis of these comparisons, we concluded that
the above made assumption on the possibility of modification of
the Mc(aF) potential for protons transmitted through a silicon crys-
tal was proven.

Let us complete the study with an analysis of five typical trajec-
tories of transmitted protons for an energy of 2.0 MeV calculated
for the rainbow potential. The initial points of two of these trajec-
tories, designated as trajectories I and II, were chosen to lie on the
rainbow line close to the channel center, and the initial points of
the remaining three of them, designated as trajectories III, IV and
V, on the rainbow line close to the atomic string. The projections
of these trajectories on the xz and yz planes are given in
Fig. 5a and b, respectively. The inset of Fig. 5b depicts the initial
points of the trajectories. The analysis showed that trajectories I,
II and III included one deflection from a channel wall, and that tra-
jectories IV and V included two deflections from the walls. We ana-
lyzed the other trajectories of transmitted protons as well. The
conclusion of the whole analysis was that the trajectories of about
90% of all the protons transmitted through the crystal included one
deflection from a channel wall, and that the trajectories of the
remaining about 10% of them, whose initial points lied very close
to the atomic string, included two deflections from the walls. An
analysis of the typical trajectories of transmitted protons for ener-
gies of 1.5, 1.0 and 0.7 MeV calculated for the rainbow potential
gave similar results, but, as expected, with the percentage of trajec-
tories of all the transmitted protons that included one deflection
from a channel wall being lower for a lower energy.
5. Summary

This morphological method of modifying the Mc(aF) potential
can be applied in each case of ion transmission through axial chan-
nels of a thin crystal where the rainbow pattern in the IP plane con-
tains a line close to the channel center and a line close to the
atomic string. Such a case can always be prepared by changing
the ion energy or crystal thickness. The adjusted rainbow pattern
in the TA plane fully determines the associated angular distribu-
tion of transmitted ions, generated with the resulting rainbow
potential. This distribution ought to be compared with the corre-
sponding distribution obtained in a high-resolution measurement.
If they agree, one can conclude that a very accurate interaction
potential has been extracted from this measurement. This poten-
tial should also be very accurate for other values of ion energy
and crystal thickness [5–7]. Unlike the ZBL, M(aF) and M(aTF)
potentials, it will be accurate across the whole channel.
If this method is applied to different axial channels of a thin
crystal, it will be possible to deduce an average rainbow potential
to accurately simulate the ion penetration through a randomly ori-
ented crystal of the same atomic composition.

This method may be applied in analogous ways in other fields
where the rainbow effect occurs and plays an important role, i.e.,
to nucleus-nucleus collisions [30–32], atom, ion or electron colli-
sions with atoms or molecules [33,34], and atom, ion or electron
scattering from crystal surfaces [35–39]. That would lead to more
accurate interaction potentials in these fields. It should be men-
tioned that a similar approach to atom scattering from crystal sur-
faces has already produced important results [40,41].
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Nešković, P.L. Pepmiller, Phys. Rev. B 33 (1986) 6036.
[20] H.F. Krause, J.H. Barrett, S. Datz, P.F. Dittner, N.L. Jones, J. Gomez del Campo,

C.R. Vane, Phys. Rev. A 49 (1994) 283.
[21] J.H. Barrett, Nucl. Instr. Meth. Phys. B 44 (1990) 367.
[22] Z.Y. Dang, M. Motapothula, Y.S. Ow, T. Venkatesan, M.B.H. Breese, M.A. Rana, A.

Osman, Appl. Phys. Lett. 99 (2011) 223105.
[23] M. Motapothula, Z.Y. Dang, T. Venkatesan, M.B.H. Breese, M.A. Rana, A. Osman,
Nucl. Instr. Meth. Phys. B 283 (2012) 29.

[24] M. Motapothula, Z.Y. Dang, T. Venkatesan, M.B.H. Breese, M.A. Rana, A. Osman,
Phys. Rev. Lett. 108 (2012) 195502.
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