
Deletion problems: current status



Problem

• Sometimes deletions from WNs on ECHO are failing

• Number of failures is very little for the last week, though the same is 
true for the number of jobs



Scenarios

• Long delete

Server side:
221206 18:27:39 ceph_posix_unlink : /lhcb:buffer/lhcb/MC/2018/SIM/00172177/0006/00172177_00067468_1.sim

221206 18:27:39 ceph_namelib : translated /lhcb:buffer/lhcb/MC/2018/SIM/00172177/0006/00172177_00067468_1.sim to 

lhcb:buffer/lhcb/MC/2018/SIM/00172177/0006/00172177_00067468_1.sim

Client side:
2022-12-06 18:28:02 UTC dirac-jobexec/DIRAC.Resources.Storage.StorageElement/SE[RAL-BUFFER] VERBOSE: Failure in plugin to 

perform removeFile Plugin: Echo lfn: /lhcb/MC/2018/SIM/00172177/0006/00172177_00067468_1.sim error Connection timed out ( 110 

: GError('DavPosix::unlink  timeout of 20s', 110))



Scenarios

• Client disappears

Client side:
Same timeout or:

2022-12-05 05:38:15 UTC dirac-jobexec/DIRAC.Resources.Storage.StorageElement/SE[RAL-BUFFER] VERBOSE: Failure in plugin to 

perform putFile Plugin: Echo lfn: /lhcb/MC/2018/KSTARTAUTAU.STRIP.DST/00172524/0000/00172524_00000173_7.KstarTauTau.Strip.dst 

error Too many open files ( 24 : Failed to copy file 

/pool/condor/dir_3647501/ZeeLDmNO3L2nCIXDjqiBL5XqABFKDmABFKDm14iPDmABFKDmtc2cNm/DIRAC_86rYP4pilot/688183994/00172524_00000173

_7.KstarTauTau.Strip.dst to destination url

https://webdav.echo.stfc.ac.uk:1094/lhcb:buffer/lhcb/MC/2018/KSTARTAUTAU.STRIP.DST/00172524/0000/00172524_00000173_7.KstarTau

Tau.Strip.dst: [24] TRANSFER ERROR: Copy failed (streamed). Last attempt: curl error (35): SSL connect error (destination))

[..]

2022-12-05 05:38:24 UTC dirac-jobexec/DIRAC.Resources.Storage.StorageElement/SE[RAL-BUFFER] VERBOSE: Failure in plugin to 

perform removeFile Plugin: Echo lfn: /lhcb/MC/2018/SIM/00172523/0000/00172523_00001782_1.sim error Permission denied ( 13 : 

GError('DavPosix::unlink  curl error (35): SSL connect error', 13))

Server side: just Macaroon request



Some of the deletion and put failures may have the same reason.



Vector read: current status



Problem

• Vector read requests to ECHO are slow. Sometimes so slow that the 
timeout is exceeded.



Naive approach

• The maximum number of chunks in a single vector read request (max_iov) can be limited

• The smaller number of chunks, the faster request is executed

• Client can query max_iov value from the server and adapt its behavior accordingly

• LHCb client (Gaudi) respects max_iov value

So we can limit max_iov (the patch is ready), to prevent the timeouts. This is only a 
mitigation.



Current implementation

ssize_t XrdCephOssFile::ReadV(XrdOucIOVec *readV, int n)

{

ssize_t nbytes = 0, curCount = 0;

for (int i=0; i<n; i++)

{curCount = Read((void *)readV[i].data,

(off_t)readV[i].offset,

(size_t)readV[i].size);

if (curCount != readV[i].size)

{if (curCount < 0) return curCount;

return -ESPIPE;

}

nbytes += curCount;

}

return nbytes;

}



Current implementation

• Reads are sequential (there is an async implementation, does it 
work?)

• Every time read is called, new connection context is created (though 
there may be a connection caching)

• Rados striper is used



How files are stored at RAL’s ECHO SE?
Every file is split into objects, each object is 64MiB in size (except the 
last one?). So, if a file dir/file1 is 128MiB, there are, in fact, two objects 
in ceph: dir/file1.000000000000000 and
dir/file1.000000000000001. Library radosstriper allow one to handle 
this transparently. And probably does much more than this.

Read (6, 2)

Rados striper

0 1 2 3 4 5 6 0 1 2 3 4 5 6

6 0



Merging reads into a single function

• Instead of calling multiple high-level reads we can create context 
once, and then execute all reads with striper

• Pre-preliminary tests show that this does not affect performance

https://github.com/stfc/xrootd-ceph/commit/94198eae81e0186c5c3678dfbf748e3af9891261


Pros
• It may work

Cons
• Extra memory required
• Change of “coordinates”, potential errors
• Reads are still sequential
• Unused data is read

Caching

We can read huge blocks of data from storage using radosstriper and 
extract readv chunks from these blocks

File striper

https://github.com/stfc/xrootd-ceph/commit/421dd2aaf419d2bc29f5cb6b0c40c94ad90a551c


Removing striper

It is possible to read blocks directly from objects

Pros
• Async reads
• No extra memory

Cons
• Change of coordinates

File

https://github.com/stfc/xrootd-ceph/commit/b5b6c47d580fa38da6dcc757d093d0e3d1f15b9a


Functional tests

Since we are refurbishing readv implementation, it’s a good idea to 
have functional tests. The simplest (probably) one is to compare readv
results with sequential reads (see link above).

https://github.com/alex-rg/readv_stuff/blob/main/readv_test.py


Preliminary results

Here are preliminary results of streaming 1 file (“benchmark”) using
lhcb software. The results are obtained from external(!) gateway, which 
was not in production, so free of load.

Test type Limit max_iov Caching No striper No changes 
(different gw with
similar config and 
huge timeout)

Time 325m47.778s ~10m 11m0.818s 323m1.111s

https://github.com/rajanandakumar/lhcb-ral-test/blob/master/test_bender2.sh


To do

• Try the changes on WN with local gateway


