

Signal interpretation in H→WW high mass analysis

Dennis Roy

16.11.2022

Introduction

RNTHAACHEN UNVERSITY UNIVERSITY

- We performed a search for a high mass resonance in the dileptonic $H \rightarrow WW$ channel
 - Currently published as PAS (<u>cds.cern.ch/record/2803723</u>)
 - To be combined with semileptonic analysis before published as paper

- The signal is assumed to have a certain non-zero width \rightarrow Interference effects with background become relevant
- In the following, details are presented on the signal interpretation and on the interference contributions

Analysis strategy

- Opposite lepton flavor $H \rightarrow WW \rightarrow e\mu + vv$ and same lepton flavor $H \rightarrow WW \rightarrow ee/\mu\mu + vv$ final states are considered
 - Signal mass: 115 5000 GeV
 - Events categorized by DNN:
 - ggF
 - VBF

3

background / untagged

RNTHAACHEN UNIVERSITY UNIVERSITY

diagrams from arXiv:1305.1883

AACHEN KANSAS STATE **Backgrounds** NIVERS Background from top quarks W^{\dagger} largest in eµ channel q $Z \rightarrow ee and Z \rightarrow \mu\mu becomes$ 00000 dominant in ee and µµ channels Weµ channel: $ee/\mu\mu$ channel: DY Тор – Тор WW Nonprompt WW Multiboson Multiboson DY Nonprompt SM Higgs SM Higgs

Signal samples

Signals were produced with POWHEG, and the W boson decay simulated with JHUGen

RWITHAACHEN KANSAS STATE

UNIVER

- For mass ≤ 1 TeV, assumes a width of a SM-like Higgs boson of higher mass
 - Small width in O(100) GeV range, but becomes large approaching TeV range
 - 647 GeV width for 1 TeV signal
 - Also includes width effects from Complex Pole Scheme
 - Above 1 TeV, a width of half the resonance mass is assumed
 - \rightarrow Very large and unphysical widths
 - → Reweighting the signal distributions to follow scenarios of smaller widths

RNTHAACHEN UNIVERSITY UNIVERSITY

An event with gen-level mass **m**_H from a sample with mean resonance mass **M** following width **G** is described by Breit-Wigner:

$$\frac{m_H \cdot G}{(M^2 - m_H^2)^2 + (m_H \cdot G)^2}$$

- The weight given per event is:
 - this function for "*G* = *new width*"
 - over the same function with "*G* = *CPS width*"
- Weights are normalized so integral over all events remains the same

- Can consider fixed relative or absolute width
 - For analysis: Considered relative widths of 0.1, 1, 2, 5, 10% w.r.t. resonance mass "Main scenario" is 2%
 - relative width

Signal interpretation in $H \rightarrow WW$ high mass analysis

- Reweighting to different scenarios generally works fine, expect for low mass resonances
- Already produced with very low width

→ Problems with statistical precision when reweighting to follow larger width

AACHEN KANSAS STATE

Signal interpretation in H→WW high mass analysis

- No large difference for different widths in distribution over discriminating variable used in the analysis
 - Except when weighting low mass signals to larger widths
 - Discriminating variable is DNN based

HAACHEN KANSAS STATE

Signal interpretation in H→WW high mass analysis Dennis Roy | Extended Higgs Sector meeting | 16.11.2022

- No large difference for different widths in distribution over discriminating variable used in the analysis
 - No big differences either looking at reconstructed discriminating variable

HAACHEN KANSAS STATE

Signal interpretation in H→WW high mass analysis Dennis Roy | Extended Higgs Sector meeting | 16.11.2022

RNTHAACHEN UNVERSITY UNIVERSITY

- An additional high mass resonance with non-zero width will interfere with background events:
 - ggF signal:
 - Non-resonant WW produced from gluons over quark loop
 - SM ggF $H \rightarrow WW$
 - VBF signal
 - Non-resonant WW produced from vector boson scattering with two additional quarks
 - SM VBF $H \rightarrow WW$

RNTHAACHEN UNIVERSITY UNIVERSITY

- Additional weights, applied on the high mass signal events, model the contribution from the interference
- Using MELA to obtain weights, using the packages:
 - JHUGenMELA (GitHub code)
 - MelaAnalytics
 - MELA inputs are:
 - Mean mass and width of signal
 - Generator level variables: Four momenta & IDs of
 - Incoming particles
 - Final state particles
 - Other outgoing LHE particles

Interference for 2% rel. width, 300 GeV signal

- Interference from non-res. WW and SM HWW mostly cancels
 - Still has a small but non-negligible contribution to signal

HAACHEN KANSAS STATE

Signal interpretation in $H \rightarrow WW$ high mass analysis

Signal interpretation in H→WW high mass analysis Dennis Roy | Extended Higgs Sector meeting | 16.11.2022

Interference

Interference for 2% rel. width, 2000 GeV signal

- For high mass signals, larger contribution in low mass tail, for ggF only
- Still mostly compensated by both interfering terms

AACHEN KANSAS STATE

RNTHAACHEN UNIVERSITY UNIVERSITY

- Interference for 20%
 - Top: 300 GeV
 - Bottom: 2000 GeV

Contribution from interference much larger for larger widths

Signal interpretation in H→WW high mass analysis Dennis Roy | Extended Higgs Sector meeting | 16.11.2022

Contribution to interference (whether constructive or destructive) is added to the signal by a factor of the square root of the signal strength modifier ("r")

RNTHAACHEN KANSAS STATE

$$Yield = (k \cdot A_{sig} + A_{SM} + A_{WW} + A_B)^2$$

= $k^2 \cdot A_{sig}^2 + k \cdot 2A_{sig}A_{SM} + k \cdot 2A_{sig}A_{WW} + ...$
= $r \cdot S + \sqrt{r} \cdot I + B$

To avoid a negative PDF of the interference term in the evaluation, consider combination of signal, background and interference ("SBI") and scale S and B accordingly

$$S \cdot (r - \sqrt{r}) + SBI \cdot \sqrt{r} + B \cdot (1 - \sqrt{r})$$

RNTHAACHEN UNIVERSITY UNIVERSITY

- Results are given as a function of the signal contribution from VBF over ggF
 - This slide: Ratio as expected from SM-like Higgs boson
 - Results seem mostly independent on signal width

Signal interpretation in $H \rightarrow WW$ high mass analysis

RNTHAACHEN UNIVERSITY UNIVERSITY

- Results are given as a function of the signal contribution from VBF over ggF
 - This slide: VBF only
 - Results seem mostly independent on signal width

Signal interpretation in $H \rightarrow WW$ high mass analysis

RNTHAACHEN UNIVERSITY UNIVERSITY

- Results are given as a function of the signal contribution from VBF over ggF
 - This slide: ggF only
 - Higher (i.e., less sensitive) limits for larger widths, and also at large width and high mass

Signal interpretation in $H \rightarrow WW$ high mass analysis

RNTHAACHEN UNIVERSITY UNIVERSITY

- Results are given as a function of the signal contribution from VBF over ggF
 - This slide: Fraction left floating, determined by fit to data
 - Higher (i.e., less sensitive) limits for larger widths, and also at large width and high mass

Signal interpretation in H \rightarrow WW high mass analysis

Conclusion

RNTHAACHEN UNIVERSITY UNIVERSITY

- In the H→WW high mass analysis, we look for a signal with non-zero width
- We consider different width scenarios by reweighting the signal distributions to different Breit-Wigner models
- Interference is taken into account by additional weights, determined by MELA
 - Effect is small for our "main" 2% relative width scenario, but is added regardless
 - Results seem mostly independent between the considered width scenarios

21

Backup

RNTHAACHEN UNIVERSITY UNIVERSITY

Links

23

RNTHAACHEN UNIVERSITY UNIVERSITY

Previous presentation last year by Andrei Gritsan on the JHUGen / MELA framework, see <u>here</u>

 \rightarrow New features in the JHU generator framework: constraining Higgs boson properties from on-shell and offshell production (arXiv:2002.09888)