Electroweak Multi-Higgs production: A smoking gun for the Type I 2HDM

Prasenjit Sanyal

Asia Pacific Center for Theoretical Physics, Korea

Outline

- Brief overview of Type I two Higgs doublet model (2HDM).
- Importance of the Electroweak (EW) production of multiple (pseudo) scalars.
- 4b + X mediated dominantly via EW processes.
- Reconstructing the masses of all the BSM Higgses.

Overview of two Higgs doublet model (2HDM)

• The Standard Model (SM) is the most successful model in explaining the fundamental particles of the Universe and their interactions.

- SM has theoretical and observational shortcomings.
- 2HDM is the minimal but phenomenologically rich extension of SM under the same gauge symmetry.
 G. C. Branco, et al., 2011

• The scalar sector of the 2HDM consists of two SU(2) Higgs doublets Φ_i , i = 1, 2.

$$\Phi_{i} = \begin{pmatrix} \phi_{i}^{+} \\ \frac{\nu_{i} + \rho_{i} + i\eta_{i}}{\sqrt{2}} \end{pmatrix}, \qquad \nu_{i} = \langle \rho_{i} \rangle \quad \nu = \sqrt{\nu_{1}^{2} + \nu_{2}^{2}} = 246 \text{ GeV}$$

 Mostly studied: CP conserving 2HDM with softly broken Z₂ (to avoid Higgs mediated FCNC) symmetry.

$$V_{2HDM} = -m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} - m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - \left[\frac{m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2}}{1} + \text{h.c.} \right] + \frac{1}{2} \lambda_{1} \left(\Phi_{1}^{\dagger} \Phi_{1} \right)^{2} + \frac{1}{2} \lambda_{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right)^{2} + \lambda_{3} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) \left(\Phi_{2}^{\dagger} \Phi_{2} \right) + \lambda_{4} \left(\Phi_{1}^{\dagger} \Phi_{2} \right) \left(\Phi_{2}^{\dagger} \Phi_{1} \right) + \left\{ \frac{1}{2} \lambda_{5} \left(\Phi_{1}^{\dagger} \Phi_{2} \right)^{2} + \text{h.c.} \right\}$$

- Based on the z_2 charge assignments to the fermions, there are four possible Yukawa structures Type I, II, X and Y.
- After EW symmetry breaking, the scalar sector consists of two CP even Higgses (h and H), one CP odd scalar A and a pair of charged Higgs H[±].
- Parameters:

 $m_h = 125 \text{ GeV}, \ m_H, \ m_A, \ m_{H^{\pm}}, \ m_{12}^2, \ v, \ \tan \beta (= v_2/v_1), \ \sin(\beta - \alpha)$

• Alignment limit: $sin(\beta - \alpha) \sim 1$ implies that the couplings of *h* is like SM Higgs boson.

 After EW symmetry breaking the Yukawa Lagrangian in terms of the mass eigenstates is:

$$\mathcal{L}_{\text{Yuk, I}}^{\text{2HDM}} = -\sum_{f=u,d,\ell} \frac{m_f}{v} \left(\xi_h^t \overline{t} h f + \xi_H^t \overline{t} H f - i \xi_A^t \overline{t} \gamma_5 A f \right) - \left\{ \frac{\sqrt{2} V_{ud}}{v} \overline{u} \left(\xi_A^u m_u P_L + \xi_A^d m_d P_R \right) H^+ d + \frac{\sqrt{2} m_l}{v} \xi_A^l \overline{v}_L H^+ I_R + \text{h.c.} \right\}$$

ξhu	ξ_h^d	ξ_h^ℓ	ξ ^u _H	ξ_H^d	ξ_{H}^{ℓ}	ξA	ξd	ξ^{ℓ}_{A}
c_{lpha}/s_{eta}	c_lpha/s_eta	c_{lpha}/s_{eta}	s_{lpha}/s_{eta}	s_{lpha}/s_{eta}	$m{s}_lpha/m{s}_eta$	$\cot\beta$	$-\cot\beta$	$-\cot\beta$

- $\xi_A^f \propto 1/\tan\beta \longrightarrow \text{fermiophobic } A, \ H^{\pm}$ $\sin\alpha = 0 \Rightarrow \tan\beta = \frac{\sin(\beta - \alpha)}{\cos(\beta - \alpha)} \longrightarrow \text{fermiophobic } H$
- <u>Other couplings:</u> (A) $hVV : \sin(\beta - \alpha)g_{hVV}^{SM}$, $HVV : \cos(\beta - \alpha)g_{hVV}^{SM}$, AVV : 0 where V = Z, W^{\pm} . (B) $hAZ_{\mu} : \frac{g}{2C_{W}}\cos(\beta - \alpha)(p + p')_{\mu}$, $HAZ_{\mu} : -\frac{g}{2C_{W}}\sin(\beta - \alpha)(p + p')_{\mu}$ (C) $H^{\pm}hW_{\mu}^{\mp} : \mp i\frac{g}{2}\cos(\beta - \alpha)(p + p')_{\mu}$, $H^{\pm}HW_{\mu}^{\mp} : \pm i\frac{g}{2}\sin(\beta - \alpha)(p + p')_{\mu}$, $H^{\pm}AW_{\mu}^{\mp} : \frac{g}{2}(p + p')_{\mu}$

- Unitarity and vacuum stability bounds can be satisfied by proper choice of $m_{12}^2 \in [0, m_H^2 \sin \beta \cos \beta].$
- The EWPO, *T* parameter depends strongly on the mass splitting of the charged Higgs and the neutral scalars.

Henning Bahl, Tim Stefaniak, Jonas Wittbrodt, JHEP 06 (2021), 183.

• Higgs signal strength measurements constrain $|\cos(\beta - \alpha)| \le 0.3$.

QCD induced multi Higgs final states.

1. Pair of neutral scalars via gluon fusion:

2. $b\bar{b}$ induced pair of neutral scalars:

3. H^{\pm} pair creation via gluon fusion:

4. $b\bar{b}$ induced H^{\pm} pair creation:

EW production of multi Higgs final states

2. H^{\pm} pair creation:

3. Charged two body states:

The charged two body (2BFS) are not possible via QCD processes.

Charged 2BFS and 3BFS via EW processes

Eur. Phys. J. C (2019) 79:512	The European	Check I
https://doi.org/10.1140/epjc/s10052-019-7025-8	Physical Journal C	update
Regular Article - Theoretical Physics		

Electroweak production of multiple (pseudo)scalars in the 2HDM

Rikard Enberg^{1,a}, William Klemm^{1,2,b}, Stefano Moretti^{3,c}, Shoaib Munir^{4,5,d}

Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden

² School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK

3 School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK

⁴ School of Physics, Korea Institute for Advanced Study, Seoul 130-722, Republic of Korea

⁵ East African Institute for Fundamental Research (ICTP-EAIFR), University of Rwanda, Kigali, Rwanda

Parameter space scans: m_H : 150 - 750 GeV; $m_{H^{\pm}}$: 50 - 750 GeV; m_A : 50 - 750 GeV; $\sin(\beta - \alpha)$: -1.0 - 1.0; m_{12}^2 : 0 - $m_A^2 \sin \beta \cos \beta$; $\tan \beta$: 2 - 25

Cross sections at 13 TeV for three possible charged 2BFSs:

Cross sections at 13 TeV for the various charged 3BFSs:

Neutral 2BFS and 3BFS

The neutral 2BFSs have contributions from QCD as well as EW processes.

1. The two 2BFs where the EW processes dominate the combined *gg* and *bb* QCD process:

2. The two 2BFs where the combined gg and $b\bar{b}$ QCD processes dominate the EW processes:

The triple Higgs coupling λ_{hhH} and λ_{HAA} can be sizable compared to the Higgs self coupling in SM.

A Left: $\sigma(HH^{\pm})BR(H \rightarrow hh)$. Right: $\sigma(HH^{\pm})BR(H \rightarrow AA)$

B The triple Higgs couplings are normalized with respect to the SM triple Higgs coupling.

4b + X via EW process

EW processes contributing to the 4b + X mode:

$$\begin{split} q\bar{q}' & \left\{ \begin{array}{l} 1. \ AAW^{\pm}: \ pp \rightarrow H^{\pm}A \rightarrow [AW^{\pm}][A] \rightarrow 4b + X, \\ 2. \ AAAW^{\pm}: \ pp \rightarrow H^{\pm}H \rightarrow [AW^{\pm}][AA] \rightarrow 4b + X, \\ q\bar{q} & \left\{ \begin{array}{l} 3. \ AAA: \ pp \rightarrow HA \rightarrow [AA][A] \rightarrow 4b + X, \\ 4. \ AAW^{+}W^{-}: \ pp \rightarrow H^{+}H^{-} \rightarrow [AW^{+}][AW^{-}] \rightarrow 4b + X \end{array} \right. \end{split} \end{split}$$

Benchmark Points:

BP	m _A [GeV]	m _{H±} [GeV]	<i>m_H</i> [GeV]	aneta	$\sin(\beta - \alpha)$	m ² ₁₂ [GeV ²]
1	50	169.8	150.0	17.11	0.975	1275.0
2	70	169.7	144.7	7.47	0.988	2355.0
3	110	234.7	250.1	26.0	0.969	2324.7

Cross sections [fb] at 13 TeV:

BP	AAW±	AAAW [±]	AAA	AAW^+W^-
1	228.21	33.829	87.93	34.77
2	165.70	68.61	141.45	31.60
3	35.21	3.16	5.0	6.85

Under preparation

Collaborators: Stefano Moretti, Shoaib Munir and Tanmoy Mondal

Pseudoscalar mass reconstruction

- Events with at least four resolved *b*-jets with $p_T > 20$ GeV, $|\eta| < 5$ and separation of R = 0.4 from the leptons and jets are selected.
- In each event there are three possible combinations of two *b*-jet pairs out of four leading *b*-jets: (1,2; 3,4), (1,3; 2,4) and (1,4; 2,3).
- The combination which minimizes

$$\Delta R = |(\Delta R_1 - 0.8) + (\Delta R_2 - 0.8)|$$

is selected, where

$$\Delta R_1 = \sqrt{(\eta_a - \eta_b)^2 + (\phi_a - \phi_b)^2}$$
$$\Delta R_2 = \sqrt{(\eta_c - \eta_d)^2 + (\phi_c - \phi_d)^2}$$

After b-jet pairing, we impose assymmetry cut

$$\alpha = \frac{|m_1 - m_2|}{m_1 + m_2} < 0.2$$

 m_1 and m_2 are the invariant masses of two *b*-jet pairs.

Under preparation

Charged Higgs mass reconstruction

 H^{\pm} mass reconstruction is done based on the dominant AAW^{\pm} mode:

- Events with leading two jets satisfying the invariant mass condition $m_{jj} = m_W \pm 15$ GeV are selected.
- In each event all possible combinations of two *b*-jet pairs are considered. The combination for which each *b*-jet pair satisfying the invariant mass condition of $m_A \pm 15$ GeV along with the assymmetry cut is selected.
- Prompt pseudoscalar: A_1 , non-prompt pseudoscalar: A_2 . Then $p_T(A_1) > p_T(A_2)$.
- $b_i b_j$ and $b_k b_l$ satisfy the invariant mass conditions and assymmetry cut. If $b_i b_j$ is from A_1 and $b_k b_l$ is from A_2 . Then $(p_i + p_j)_T > (p_k + p_l)_T$.
- *b_kb_l* and the jet pair coming from *W* boson make the four jet system. The invariant mass of *b_kb_ljj* reconstructs the mass of *H*[±].
- If more than one combination of four jet system is possible. The correct combination gives the maximum separation of the reconstructed H^{\pm} and A_1 in the $\eta - \phi$ space.

Under preparation

Heavy Higgs mass reconstruction

H mass reconstruction is done based on the mode which contain $H \rightarrow AA \rightarrow 4b$ decay. AAA mode serves the purpose.

- In each event all possible combinations of three *b*-jet pairs are considered. The combination for which each *b*-jet pair satisfying the invariant mass condition of $m_A \pm 15$ GeV and the assymmetry cut is selected.
- Prompt pseudoscalar: A_1 , non-prompt pseudoscalar: $A_{2,3}$ Then $p_T(A_1) > p_T(A_{2,3})$
- $b_i b_j$, $b_k b_l$ and $b_m b_n$ satisfy the invariant mass conditions and assymmetry cut. If $b_i b_j$ is from A_1 , then $(p_i + p_j)_T > (p_k + p_l)_T$ and $(p_i + p_j)_T > (p_m + p_n)_T$.
- *b_kb_l* and *b_mb_n* make the 4*b*-jet system. The invariant mass of the 4*b*-jet system reconstructs the mass of *H*.
- If more than one combination of 4*b*-jet system is possible. The correct combination gives the maximum separation of the reconstructed *H* and A_1 in the $\eta - \phi$ space.

Under preparation

Hurdles of H mass reconstruction:

- 6*b*-jet events are very rare because of finite miss-tagging probability. Therefore, events with 5*b* jets are to be considered and the 6th *b*-jet is assumed to be one of the light jets. Light jet with leading transverse momentum is given the priority as the miss-tagged *b*-jet.
- 2. The reconstruction algorithm fails if $H \rightarrow AZ$ is allowed and dominates over $H \rightarrow AA$ decay.

Conclusions

- EW processes provides the charged 2BFSs and 3BFSs which complements the widely studied QCD processes.
- The neutral 2BFSs and therefore the neutral 3BFSs via EW processes can dominate the QCD induced processes.
- 4*b* + *X* final state obtained through EW processes is useful to reconstruct the masses of all the BSM Higgses.

Conclusions

- EW processes provides the charged 2BFSs and 3BFSs which complements the widely studied QCD processes.
- The neutral 2BFSs and therefore the neutral 3BFSs via EW processes can dominate the QCD induced processes.
- 4*b* + *X* final state obtained through EW processes is useful to reconstruct the masses of all the BSM Higgses.

THANK YOU

Backup

