Measurements of Higgs boson properties with the ATLAS detector

Luca Franco (Nikhef and Radboud University)
On behalf of the ATLAS collaboration

Introduction

The Higgs boson in the Standard Model (SM) of particle physics

Higgs-like particle discovered at the LHC in 2012:

- How large is its *mass* (m_H)?
- What is its decay width (Γ_H) ?
- And its <u>CP/spin</u> state?

Higgs properties: mass, width, CP/spin

- The Higgs boson is unstable: the larger its width, the faster it decays
 - New physics can alter its value both directly (new final states) and indirectly (virtual particles in the loop)

- Predicted to be spin 0 and CP-even J^{CP}=0++
 - Pure CP-odd states already excluded from its observed decays
 - CP admixture couplings could potentially explain baryon asymmetry of the universe

$$V(\phi) \propto \frac{1}{2} m_H^2 \phi^2 + O(\phi^3)$$

- Mass not predicted by the theory! It determines:
 - Strength of interaction with other SM particles
 - Shape of the Higgs potential (together with the VEV)

$H \rightarrow ZZ(*)$

- Measurement of the mass (arXiv:2207.00320)
- Constraint on the width (arXiv:2304.01532)

m_H measurement in H \rightarrow ZZ* \rightarrow 4ℓ (ℓ=e, μ): method

- Performed in 4 channels $(4\mu, 2\mu 2e, 2e2\mu, 4e)$
- Deep Neural Network (D_{NN}) separates signal and main non-resonant ZZ background
- Uncertainty on m_H further constrained using per-event resolution σ_i
- 2-dimensional PDF to fit the signal $\mathcal{P}(m_{4\ell}|D_{NN},\sigma_i,m_H)\cdot\mathcal{P}(D_{NN}|m_H)$

m_H measurement in H→ZZ*→4 ℓ (ℓ =e, μ): results

- The most precise Higgs measurement → and will improve with more data!
- Systematics under control → uncertainties related to muon and electron reconstruction
 ~ O(10) MeV

Very high precision!

Higgs decay width

• The SM predicts a very narrow width $\Gamma_H = 4.07$ MeV

Direct measurement? <u>Experimental resolution O(1) GeV</u>

$$\frac{\mathrm{d}\sigma_{pp\to H\to ZZ}}{\mathrm{d}M_{4l}^2} \sim \frac{g_{Hgg}^2 g_{HZZ}^2}{(M_{4l}^2 - m_H^2)^2 + m_H^2 \Gamma_H^2}$$

gap!!!

Higgs decay width

- The SM predicts a very narrow width $\Gamma_H = 4.07 \text{ MeV}$
- Direct measurement? Experimental resolution O(1) GeV
- Indirect approach: exploit off-shell Higgs production

Phys. Rev. D 89 (2014) 053011

 $\mu_{ ext{offshell}} \propto \Gamma_H$ $\mu_{
m onshell}$

Interference

- Signal and background have same initial and final state
- Negative interference in the off-shell region with destructive effects on the cross-section

In the ATLAS analysis, three regions are defined to target the production modes: ggF, EW and mixed.

Γ_H measurement in H*→ZZ: results

- Performed in two channels:
 - 4ℓ final state, where the output of neural networks (O_{NN}), used to enhance Higgs signal, is fitted
 - 2 ℓ 2 ν final state, where the transverse mass of the ZZ system is fitted $m_{\mathrm{T}}^{ZZ} \equiv \sqrt{\left[\sqrt{m_Z^2 + (p_{\mathrm{T}}^{\ell\ell})^2} + \sqrt{m_Z^2 + (E_{\mathrm{T}}^{\mathrm{miss}})^2}\right]^2 \left|\vec{p}_{\mathrm{T}}^{\ell\ell} + \vec{E}_{\mathrm{T}}^{\mathrm{miss}}\right|^2}$
- Uncertainty from theoretical modelling of signal and backgrounds is the dominant systematic

First direct measurement of Γ_H with ATLAS!

(And 3.3σ evidence of Higgs off-shell production)

CP measurements

- H→bb (arXiv:2303.05974)
- H→ττ (arXiv:2212.05833)
- H→ZZ*→4ℓ
 (arXiv:2304.09612)
- VBF $H \rightarrow \gamma \gamma$ (arXiv:2208.02338)

CP nature of Yukawa couplings

$$\mathcal{L}_{ffH} = \kappa_f' y_f \phi \bar{\psi}_f (\cos \alpha + i \gamma_5 \sin \alpha) \psi_f$$
Coupling strength CP-mixing angle

$$\phi_{\tau}$$
 is $9^{\circ} \pm 16^{\circ}$

And pure CP-odd hypothesis excluded at 3.4o

- H→bb produced in association with top quarks (ttH and tH)
 - CP-sensitive observables rely on characteristics of the ttH topology for CP-odd production
- Interactions with tau-leptons in H→ττ
 - CP-sensitive observables rely on the geometry of the visible τ decay products

$$\alpha = 11^{\circ +52^{\circ}}_{-73^{\circ}}$$

And pure CP-odd hypothesis excluded at 1.2σ

CP nature of HVV

Possible sources of CP-violation can be represented by effective couplings

$$\mathcal{L}_{\mathrm{SMEFT}} = \mathcal{L}_{\mathrm{SM}} + \sum_{i} \frac{c_{i}}{\Lambda^{2}} O_{i}^{(6)}$$

$$\mathcal{M}_{\mathrm{Mix}}(\boldsymbol{c}) = \mathcal{M}_{\mathrm{SM}} + \mathcal{M}_{\mathrm{BSM}}(\boldsymbol{c})$$

$$\Rightarrow |\mathcal{M}_{\mathrm{Mix}}(\boldsymbol{c})|^{2} = \mathcal{M}_{\mathrm{SM}}|^{2} + 2\Re(\mathcal{M}_{\mathrm{SM}}\mathcal{M}_{\mathrm{BSM}}^{*}(\boldsymbol{c})) + |\mathcal{M}_{\mathrm{BSM}}(\boldsymbol{c})|^{2}$$
CP-even

Symmetric for CP-even (SM)
Asymmetric for CP-odd (BSM)

Optimal observables (OO)

- Production OO → 2-jets kinematics, used in VBF H→γγ and H→ZZ*
- Decay OO → 4I decay kinematics, used in H→ZZ*

CP nature of HVV: results

Operator	Structure	Coupling
	Warsaw Basis	
$O_{\Phi ilde{W}}$	$\Phi^\dagger \Phi ilde{W}^I_{\mu u} W^{\mu u I}$	$c_{H\widetilde{W}}$
$O_{\Phi ilde{W}B}$	$\Phi^\dagger au^I \Phi ilde{W}^I_{\mu u} B^{\mu u}$	$c_{H\widetilde{W}B}$
$O_{\Phi ilde{B}}$	$\Phi^\dagger\Phi ilde{B}_{\mu u}B^{\mu u}$	$c_{H\widetilde{B}}$
	Higgs Basis	
$O_{hZ ilde{Z}}$	$hZ_{\mu u} ilde{Z}^{\mu u}$	\widetilde{c}_{zz}
$O_{hZ ilde{A}}$	$hZ_{\mu u} ilde{A}^{\mu u}$	$\widetilde{c}_{z\gamma}$
$\underline{\hspace{1.5cm} O_{hA\tilde{A}}}$	$hA_{\mu u} ilde{A}^{\mu u}$	$\widetilde{c}_{\gamma\gamma}$

 \tilde{d} single BSM CP-odd coupling

$VBF H \rightarrow \gamma\gamma$	VBF	H	\rightarrow	γγ
----------------------------------	------------	---	---------------	----

	68% (exp.)	68% (obs.)
\tilde{d} (inter. only)	[-0.027, 0.027]	[-0.011, 0.036]
\tilde{d} (inter.+quad.)	[-0.028, 0.028]	[-0.010, 0.040]
\tilde{d} from $H \to \tau \tau$	[-0.038, 0.036]	[-0.090, 0.035]
Combined \tilde{d}	[-0.022, 0.021]	[-0.012, 0.030]
$c_{H\tilde{W}}$ (inter. only)	[-0.48, 0.48]	[-0.16, 0.64]
$c_{H\tilde{W}}$ (inter.+quad.)	[-0.48, 0.48]	[-0.15, 0.67]

- Constraints on Wilson coefficients related to dim-6 CP-odd operators
- Two bases considered: Warsaw and Higgs mass eigenstates
- Sensitive to only CP-odd couplings i.e. not CP-even quadratic terms, nor CP-even couplings
- All results are compatible with the SM expectation of pure CPeven couplings

Conclusions

- 10 years after the discovery, Higgs boson's properties are investigated with great detail:
 - Mass is measured with the extremely high precision of ~0.1%!
 - Width is constrained to be less than 2.6 times the SM prediction
 - Search for small <u>CP</u>-odd couplings remain compatible with SM
- All results were obtained with the full Run 2 dataset collected by the ATLAS detector
- Exciting developments expected in the future with more data coming from the LHC, so

stay tuned!

Back-up

HZZ CP: analysis strategy

- Decay-only fit:
 - Decay-level OO in the Inclusive SR
- Production-only fit:
 - VBF-depleted region to estimate ggF normalization
 - Production-level OO in VBF SR 1-4
- Combined fit:
 - Decay-level OO in VBFdepleted region
 - Production-level OO in VBF SR 1-4

- ZZ* CR to estimate bkg normalisation
- Morphing method to perform a shape-only analysis

HZZ off shell: analysis strategy

Analyses performed in three signal regions

 $n_{
m jets} = 1$ and $\eta_j < 2.2$

 $n_{
m jets}\,\geq 2$ and $\Delta\eta_{jj} < 4.0$

Interference component parametrised separately from signal and background

$$\nu^{\rm ggF}(\mu_{\rm off\text{-}shell}^{\rm ggF}, \boldsymbol{\theta}) = \mu_{\rm off\text{-}shell}^{\rm ggF} \cdot n_{\rm S}^{\rm ggF}(\boldsymbol{\theta}) + \sqrt{\mu_{\rm off\text{-}shell}^{\rm ggF}} \cdot (n_{\rm SBI}^{\rm ggF}(\boldsymbol{\theta}) - n_{\rm S}^{\rm ggF}(\boldsymbol{\theta}) - n_{\rm B}^{\rm ggF}(\boldsymbol{\theta})) + n_{\rm B}^{\rm ggF}(\boldsymbol{\theta})$$