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Black Hole Imaging with the Event Horizon Telescope

Messier 87* (2019, 2021) Sagittarius A* (2022)

1. Central Depression 2. Accretion Flow
 Dark “shadow” caused b  Hot plasma emits primarily in
y p p y
presence of event horizon synchrotron
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Origin of the Shadow

* Photons emitted by the plasma will follow null geodesics governed by GR

* Can plot the trajectories of these geodesics connecting observer to source

Ray passes through emitting region

) before escaping =2 intensity builds

» “Shadow” corresponds to rays terminating on the horizon (Falcke et al. 2000,
Bardeen 1973, Luminet 1979)

* Edge of the shadow corresponds to a critical curve: delineates the boundary
between plunge and escape

Ray terminates on
horizon without passing
through emitting region
- intensity can’t build
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Photon Ring

* What about rays that lie exactly on the critical curve?
—> They asymptote to spherical photon orbits

Black Hole

‘ “Photon Shell”

Orbit

* Projected image of these spherical orbits is a bright “photon ring”

Image: Wong (2022) >
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Photon Subrings

1
O) =
n=2
* Spherical photon orbits are unstable
 Can count number of half-orbits on trajectory (labelled with integer #

Total Image

= “subring index”)
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Images: Chesler et

al. (2020), George
Wong
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1. General Relativistic Magnetohydrodynamics 2. General Relativistic Ray Tracing (GRRT)
(GRMHD): * Numerically solve null geodesic equation to
* Determine properties (e.g. temperature, propagate light rays

magnetization, density) of the plasma
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Simulating Images of the Photon Ring

1. General Relativistic Magnetohydrodynamics

2. General Relativistic Ray Tracing (GRRT)
(GRMHD): * Numerically solve null geodesic equation to
* Determine properties (e.g. temperature, propagate light rays

magnetization, density) of the plasma * Compute image as a function of inclination

i (camera’s polar angle) and ¢cam (camera’s
azimuthal angle)

Images: Ripperda et
al. (2020), Wikipedia 3
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*  How does appearance of the photon ring respond to changes in the accretion flow?
o Flux Eruption Events dramatically alter brightness of photon ring
o GRMHD simulations show magnetic reconnection in the accretion flow = causes large
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* Photon ring flux is highly variable during eruption
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Photon Ring Variability

Flux contained in
n=1 subring

* Relative brightness tracked through Photon ring Flux Ratio (PFR) = 2

— Flote— Total image flux
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*  What'’s causing this loop?
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* Model the flux eruption event as a rotating “half-disk” of emitting material 2 mimics the
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* Ray-trace the model for different values of @cam and compute photon ring fluxes
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Toy model reproduces same loop in parameter space
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Toy Model PFR

Toy model reproduces same loop in parameter space

* Photon ring is magnified when half-disk

passes behind black hole, demagnified when
half-disk is in front

* Rotation of half-disk causes Doppler
boosting to alter brightness of total image
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Toy Model PFR

* Toy model reproduces same loop in parameter space
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* Loop created from magnification (gravitational lensing) and Doppler effects >
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Back to GRMHD

* Does the same explanation work for GRMHD? Yes!

Flux Eruption
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Feel free to reach out with questions!
zgelles@princeton.edu
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