The Primordial Black Holes that Disappeared: Connections to Dark Matter and MHz-GHz Gravitational Waves

Thomas C. Gehrman

The UNIVERSITY *of* OKLAHOMA

Talk based on arXiv: 2304.09194 & 2211.08431

With Barmak Shams Es Haghi, Kuver Sinha, and Tao Xu

Motivation

- First order phase transition (FOPT) and curvature perturbation comparison and dependencies
- Generate dark matter (DM) relic abundance and standard model (SM) particles from PBH Hawking evaporating before BBN
- Light PBHs are difficult to detect (<10⁹g) since they Hawking evaporate before BBN, but High frequency gravitational waves (GW) serves as a new channel for detection
- Determine PBH origin from either mechanism using High frequency stochastic GW signals

PBH Mass Range & GW Signal Range

Primordial Black Holes from DM First Order Phase Transition

Image Credit: Baker, Breitbach, Kopp, and Mittnacht 2021

 χ is our dark matter particle and is weakly coupled through gravity (See Lagrangian left)

$$\mathcal{L} \supset \bar{\psi} \partial \!\!\!/ \psi - y_{\psi} \phi \bar{\psi} \psi + \mathcal{L}_{SM,\chi} \quad y_{\psi} \sim 10^{-4} \sqrt{\frac{T_{\star}}{10^6 \text{GeV}}}$$

- φ & ψ is our "Phase Transition" sector and in our case
 ψ particles are being trapped
- We assume a %100 trapping rate

Baker, Breitbach, Kopp, and Mittnacht 2021

• Our Initial conditions are set to form a PBH following the criteria of above paper

$$M_{\rm PBH} \simeq 16.3 \times \left(\frac{10^{15} \text{ GeV}}{T_{\star}}\right)^2 \left(\frac{R_{\star}}{H_{\star}^{-1}}\right)^2 \text{g}$$

Black Hole Thermodynamics

$$T_{\rm PBH}(t) = \frac{M_{\rm Pl}^2}{8\pi M_{\rm PBH}(t)}$$
$$\frac{d^2 u_{\chi}(E,t)}{dt dE} = \frac{g_{\chi}}{8\pi^2} \frac{E^3}{e^{E/T_{\rm PBH}(t)} \pm 1}$$
$$\frac{d^2 N_{\chi}}{dt dE} = \frac{4\pi r_{\rm S}^2}{E} \frac{d^2 u_{\chi}}{dt dE}$$
$$N_{\chi} = \frac{120\,\zeta(3)}{\pi^3} \frac{g_{\chi}}{g_{\star}(T_{\rm PBH})} \frac{M_{\rm PBH}^2(t_i)}{M_{\rm Pl}^2}, \qquad T_{\rm PBH}(t_i) > m_{\chi}$$
$$N_{\chi} = \frac{15\,\zeta(3)}{8\pi^5} \frac{g_{\chi}}{g_{\star}(T_{\rm PBH})} \frac{M_{\rm Pl}^2}{m_{\chi}^2}, \qquad T_{\rm PBH}(t_i) < m_{\chi}$$

Dark Matter Relic Abundance

$$Y_{\chi} = \frac{3}{4} \frac{g_{\star}(T_i)}{g_{\star,s}(T_i)} \beta_{\text{PBH}} N_{\chi} \frac{T_i(M_{\text{PBH}})}{M_{\text{PBH}}}$$
$$\Omega_{\chi} = \frac{m_{\chi} Y_{\chi}}{\rho_c} s(t_0)$$

 m_{χ} ranges from (10⁻³- 10¹⁹) GeV $\rho_c(t_0) = 1.0537 \times 10^{-5} h^2 \text{ GeV cm}^{-3}$ $s(t_0) = 2891.2 (T_0/2.7255 \text{K})^3 \text{ cm}^{-3}$

First Order Phase TransitionCurvature Perturbations $Y_{\chi,\text{FOPT}} = \frac{3}{4}\beta_{\text{PBH}}N_{\chi}\frac{T_{\star}}{M_{\text{PBH}}}$ $Y_{\chi,\zeta} = \frac{3}{4}\beta_{\text{PBH}}N_{\chi}\frac{T_i(M_{\text{PBH}})}{M_{\text{PBH}}}$ $T_{\star} \simeq 7.1 \times 10^{14}\sqrt{32.8 + \left(\frac{R_{\star}}{H_{\star}^{-1}}\right)^4 \left(\frac{1 \text{ g}}{M_{\text{PBH}}}\right)^{\frac{1}{2}}} \text{ GeV}$ $T_{i,\zeta} \simeq 4.3 \times 10^{15} \left(\frac{\gamma}{0.2}\right)^{\frac{1}{2}} \left(\frac{106.75}{g_{\star}(T_i)}\right)^{\frac{1}{4}} \left(\frac{1 \text{ g}}{M_{\text{PBH}}}\right)^{\frac{1}{2}} \text{ GeV}$

For R $_{\star}/H_{\star}^{-1}$ = 1.5 this gives a prefactor value of $\approx 6.6 \times 10^{15}$

β_{PBH} for Curvature Perturbations: Dependency on A_{ζ} , k_{p} , and M_{PBH}

β_{PBH} for FOPT: Dependency on β/H_{\star} and M_{PBH}

First Order Phase Transition - Map

 $\{\Omega_{\chi}h^2, m_{\chi}\} \rightarrow \{M_{\rm PBH}, \beta_{\rm PBH}\} \rightarrow \{\alpha, \beta, T_{\star}, v_w\} \rightarrow \{h_c, f_{\rm GW}\} \text{ density}$

α ≡ Energy density released during phase
 transition normalized by the radiation energy
 density

 $\beta \equiv$ Inverse time scale of the phase transition

β_{PBH} Contours on the Plane of M_{PBH} vs m_{χ}

- Red lines are for FOPT and black lines are for curvature perturbation
- Matter domination for FOPT and curvature perturbation almost overlap
- For R $_{\star}$ /H $_{\star}$ ⁻¹ = 1.5 the prefactor values are 5.3 x 10⁻¹³ m_{\chi} < T_{PBH} & 4.8 x 10⁻²¹ for m $_{\chi}$ > T_{PBH}

$$\beta_{\text{PBH}} = \frac{1}{g_{\chi}} \left(\frac{g_{*}(T_{i})}{106.75} \right)^{1/4} \left(\frac{0.2}{\gamma} \right)^{1/2} \left(\frac{g_{*}(T_{\text{PBH}})}{106.75} \right) \times \\ \times \begin{cases} 8.0 \times 10^{-13} \left(\frac{\text{TeV}}{m_{\chi}} \right) \left(\frac{1\text{g}}{M_{\text{PBH}}} \right)^{1/2} & m_{X} < T_{\text{PBH}} \\ 7.1 \times 10^{-21} \left(\frac{m_{\chi}}{10^{15} \text{GeV}} \right) \left(\frac{M_{\text{PBH}}}{1\text{g}} \right)^{3/2} & m_{X} > T_{\text{PBH}} \end{cases} \end{cases}$$
$$\beta_{\text{PBH,crit}}^{\zeta} \simeq 2.8 \times 10^{-6} \left(\frac{g_{\star}(T_{\text{BH}})}{106.75} \right)^{1/2} \left(\frac{0.2}{\gamma} \right) \left(\frac{1\text{g}}{M_{\text{PBH}}} \right)$$

$$\begin{split} & \frac{\text{First Order Phase Transition}}{\beta_{\text{PBH}} = \frac{1}{g_{\chi}} \left(\frac{g_{\star}(T_{\text{PBH}})}{106.75} \right) \left[164 + 5 \left(\frac{R_{\star}}{H_{\star}^{-1}} \right)^4 \right]^{-1/2} \left(\frac{R_{\star}}{H_{\star}^{-1}} \right)^{-1} \times \\ & \times \begin{cases} 1.1 \times 10^{-11} \left(\frac{\text{TeV}}{m_{\chi}} \right) \left(\frac{1\text{g}}{M_{\text{PBH}}} \right)^{1/2} & m_X < T_{\text{PBH}}, \\ 1.0 \times 10^{-19} \left(\frac{m_{\chi}}{10^{15} \text{ GeV}} \right) \left(\frac{M_{\text{PBH}}}{1\text{g}} \right)^{3/2} & m_X > T_{\text{PBH}}. \end{cases} \\ & \beta_{\text{PBH,crit}}^{\text{FOPT}} \simeq 1.9 \times 10^{-6} \left(\frac{1 \text{ g}}{M_{\text{PBH}}} \right) \left(\frac{g_{\star}(T_{\star})}{106.75} \right)^{\frac{1}{4}} \Big|_{R_{\star}/H_{\star}^{-1}=1.5} \end{split}$$

Gravitational Waves f_{GW}^{Peak} vs M_{PBH}

 h_c^{peak} vs f_{GW}^{Peak}

Summary

• A Map shown from the DM relic abundance to GW frequency and strain

 $\{\Omega_{\chi}h^2, m_{\chi}\} \rightarrow \{M_{\text{PBH}}, \beta_{\text{PBH}}\} \rightarrow \{A_{\zeta}, k_p\} \rightarrow \{h_c, f_{\text{GW}}\}$

 $\{\Omega_{\chi}h^2, m_{\chi}\} \to \{M_{\rm PBH}, \beta_{\rm PBH}\} \to \{\alpha, \beta, T_{\star}, v_w\} \to \{h_c, f_{\rm GW}\}$

- Showed the sensitivity of both formation mechanisms to A $_{\gamma}$, and β/H_{\star}
- DM relic abundance can be generated from χ particle
- Showed the GW signals can be distinguished and if observed can determine what formation mechanism mechanism, either FOPT or Curvature Perturbation, can produce PBHs and then observed dark matter abundance.

Thank you!

Primordial Black Holes from Curvature Perturbations

- Curvature perturbations within a given horizon R have a probability of collapsing into a PBH
- The Mass of the PBH depends on the horizon size.

Image: Escriva 2022

$$M_{\rm PBH}(k) = \gamma M_H(k) = 4 \times 10^3 \left(\frac{\gamma}{0.2}\right) \left(\frac{k}{10^{21} {\rm Mpc}^{-1}}\right)^{-2} {\rm g}$$