# Vector Spaces for Direct Detection

An Extremely Efficient Framework for Scattering Calculations

BEN LILLARD
UNIVERSITY OF OREGON

**PHENO 2023** 



# Why Directionality for DM Direct Detection?

Distinguish (DM) signal from (SM) background:

- sub-GeV: experiments at low energies (eV) have larger backgrounds
- **nuclear recoil**: zero-background experiments... until they encounter irreducible neutrino background (see e.g. 2208.09002)

**Directionality**: if scattering rate depends on detector orientation, scattering rate **modulates** every 23 hours 56 minutes



# Newly Challenging Rate Calculation:

Astrophysics

Particle Physics (DM-SM)

$$R_s = N_{\rm SM} n_{\chi} \bar{\sigma}_0 \int \frac{d^3q}{4\pi \mu_{\chi \rm SM}^2} \int d^3v \, g_{\chi}(\mathbf{v}) \times \delta\left(\omega_s + \frac{q^2}{2m_{\chi}} - \mathbf{q} \cdot \mathbf{v}\right) F_{\rm DM}^2(q) \times f_s^2(\mathbf{q})$$

What would have been a 2d integral is now a 6d integral

**Repeat** for every...

- **DM** mass and  $F_{DM}$
- velocity distribution
- detector form factor
- detector orientation

#### SM Detector Physics



# Newly Challenging Rate Calculation:

**Repeat** for every...

- **DM mass and**  $F_{DM}$   $\longrightarrow (50 \times m_{\chi}) \times (2 \times F_{DM})$
- **velocity distribution**  $\longrightarrow$  astro uncertainties; simulations...
- detector form factor 
   — many possible target materials; imprecise SM physics modeling
- **detector orientation**  $\longrightarrow$  SO(3): a 3d space of orientations

For a total of:  $10^2 \times 10^3 \times 10^2 \times 10^3 \sim 10^{10}$  6d integrals

Only  $5 \cdot 10^5$  minutes in a year.

Computational expense: about 10<sup>2</sup> **CPU-centuries** 

### Factorizing the Rate Calculation:

$$R_s = N_{\rm SM} n_{\chi} \bar{\sigma}_0 \int \frac{d^3q}{4\pi \mu_{\chi \rm SM}^2} \int d^3v \, g_{\chi}(\mathbf{v}) \times \delta \left(\Delta E + \frac{q^2}{2m_{\chi}} - \mathbf{q} \cdot \mathbf{v}\right) F_{\rm DM}^2(q) \times f_s^2(\mathbf{q})$$

$$R_{s} = \frac{N_{\rm SM} n_{\chi} \bar{\sigma}_{0}}{4\pi \mu_{\chi \rm SM}^{2}} \langle g_{\chi} | \phi_{v} \rangle \cdot \left\langle \phi_{v} \left| \delta \left( \Delta E + \frac{q^{2}}{2m_{\chi}} - \mathbf{q} \cdot \mathbf{v} \right) F_{\rm DM}^{2}(q) \right| \varphi_{q} \right\rangle \cdot \left\langle \varphi_{q} \left| f_{s}^{2} \right\rangle \right.$$

- 1. Define basis functions,  $|nlm\rangle = r_n(q) Y_{lm}(\hat{q})$ , with spherical harmonics  $Y_{lm}$
- 2. Projections of  $g_{\chi}$  and  $f_s^2$  onto each basis  $\longrightarrow$  **vectors**
- 3. Kinematic operator (incl.  $m_{\chi}$ )  $\longrightarrow$  **matrix** connecting (v, q) spaces
- 4. Scattering rate is given by matrix multiplication

Difficult integrals  $\langle g_{\chi} | \phi_{\nu} \rangle$  and  $\langle \varphi_q | f_s^2 \rangle$  need to be done **once** (per model)

For some choices of radial basis functions, can evaluate matrix analytically

$$\left\langle n\ell m \left| \delta \left( \Delta E + \frac{q^2}{2m_{\chi}} - \mathbf{q} \cdot \mathbf{v} \right) F_{\mathrm{DM}}^2(q) \right| n'\ell' m' \right\rangle \propto \delta_{\ell\ell'} \delta_{mm'} \mathcal{I}_{nn'}^{(\ell)}$$

# **Applications**

- Which detector orientations maximize or minimize a modulation signal?
- Propagate astro/materials uncertainties through the rate calculation
- Extract physics information (e.g.  $m_{\chi}$ ) from details of a modulation signal
- Compare statistical power of different target materials
- Search for substructures in DM velocity distribution





### Conclusion

"Vector space" rate calculation is faster by many orders of magnitude for complicated analyses

For every...

# of integrals...

**DM** mass and  $F_{DM}$ 

 $\longrightarrow 0$  (matrix  $I_{n,n'}^{(\ell)}$  has analytic solution)

**velocity distribution**  $\longrightarrow N_{\nu}$  3d integrals  $\langle g_{\nu} | nlm \rangle$ 

**detector form factor**  $\longrightarrow N_q$  3d integrals  $\langle nlm | f_s^2 \rangle$ 

**detector orientation**  $\longrightarrow$  0 (Rotation matrices act on  $Y_{lm}$ )

For a total of:  $10^3 N_v + 10^2 N_q \sim 10^6 \, \text{3d integrals}$ 

Old way: about  $10^2$  **CPU-centuries** 

New way: **CPU-days** to tabulate  $|g_{\gamma}\rangle$  and  $|f_{s}^{2}\rangle$ 

**Minutes/hours** for 10<sup>10</sup> point calculation

Coming soon to github and arXiv: VSDM and 2305.XXXXXX

# How to calculate DM-molecule scattering:

see arXiv:2103.08601

LCAO: Linear Combinations of Atomic Orbitals



**A Complication:** trans-stilbene crystals form unit cell with 4 components





# III. Results

arXiv:2103.08601



Crystal Form Factor



# **Results:** Diatomic Molecules CO and $N_2$ (2208.09002)



 $10^{3}$ 

— CO

 $--N_2$ 

- - CMR

-NAC