Vector Spaces for Direct Detection

An Extremely Efficient Framework for Scattering Calculations

Ben Lillard
PHENO 2023
University of Oregon

Why Directionality for DM Direct Detection?

Distinguish ($\boldsymbol{D M}$) signal from $(\boldsymbol{S M})$ background:

- sub-GeV: experiments at low energies $(e V)$ have larger backgrounds
- nuclear recoil: zero-background experiments... until they encounter irreducible neutrino background (see e.g. 2208.09002)

Directionality: if scattering rate depends on detector orientation, scattering rate modulates every 23 hours 56 minutes

Cygnus...

Newly Challenging Rate Calculation:

$$
\begin{aligned}
& \text { Astrophysics Particle Physics (DM-SM) } \\
& \begin{array}{c}
R_{s}=N_{\mathrm{SM}} n_{\chi} \bar{\sigma}_{0} \int \frac{d^{3} q}{4 \pi \mu_{\chi \mathrm{SM}}^{2}} \int \underbrace{d^{3} v g_{\chi}(\mathbf{v})} \times \underbrace{\delta\left(\omega_{s}+\frac{q^{2}}{2 m_{\chi}}-\mathbf{q} \cdot \mathbf{v}\right) F_{\mathrm{DM}}^{2}(q)}_{\text {SM Detector Physics }} \times \underbrace{}_{\text {笈 }(\mathbf{q})}
\end{array} \\
& \text { is now a 6d integral } \\
& \text { Repeat for every... } \\
& \text { - DM mass and } F_{D M} \\
& \text { - velocity distribution } \\
& \text { - detector form factor } \\
& \text { - detector orientation }
\end{aligned}
$$

Newly Challenging Rate Calculation:

Repeat for every...

- DM mass and $F_{D M} \quad \longrightarrow\left(50 \times m_{\chi}\right) \times\left(2 \times F_{D M}\right)$
- velocity distribution \longrightarrow astro uncertainties; simulations...
- detector form factor \longrightarrow many possible target materials; imprecise SM physics modeling
- detector orientation $\longrightarrow S O(3):$ a 3 d space of orientations

For a total of: $10^{2} \times 10^{3} \times 10^{2} \times 10^{3} \sim 10^{10} \mathbf{6 d}$ integrals

Only $5 \cdot 10^{5}$ minutes in a year.
Computational expense: about 10^{2} CPU-centuries

Factorizing the Rate Calculation:

$$
\begin{aligned}
& R_{s}=N_{\mathrm{SM}} n_{\chi} \bar{\sigma}_{0} \int \frac{d^{3} q}{4 \pi \mu_{\chi \mathrm{SM}}^{2}} \int d^{3} v g_{\chi}(\mathbf{v}) \times \delta\left(\Delta E+\frac{q^{2}}{2 m_{\chi}}-\mathbf{q} \cdot \mathbf{v}\right) F_{\mathrm{DM}}^{2}(q) \times f_{s}^{2}(\mathbf{q}) \\
& R_{s}=\frac{N_{\mathrm{SM}} n_{\chi} \bar{\sigma}_{0}}{4 \pi \mu_{\chi \mathrm{SM}}^{2}}\left\langle g_{\chi} \mid \phi_{v}\right\rangle \cdot\left\langle\phi_{v}\right| \delta\left(\Delta E+\frac{q^{2}}{2 m_{\chi}}-\mathbf{q} \cdot \mathbf{v}\right) F_{\mathrm{DM}}^{2}(q)\left|\varphi_{q}\right\rangle \cdot\left\langle\varphi_{q} \mid f_{s}^{2}\right\rangle
\end{aligned}
$$

1. Define basis functions, $|n l m\rangle=r_{n}(q) Y_{l m}(\hat{q})$, with spherical harmonics $Y_{l m}$
2. Projections of g_{χ} and f_{s}^{2} onto each basis \longrightarrow vectors
3. Kinematic operator (incl. $\left.m_{\chi}\right) \longrightarrow$ matrix connecting $(\boldsymbol{v}, \boldsymbol{q})$ spaces
4. Scattering rate is given by matrix multiplication

Difficult integrals $\left\langle g_{\chi} \mid \phi_{v}\right\rangle$ and $\left\langle\varphi_{q} \mid f_{s}^{2}\right\rangle$ need to be done once (per model)
For some choices of radial basis functions, can evaluate matrix analytically

$$
\langle n \ell m| \delta\left(\Delta E+\frac{q^{2}}{2 m_{\chi}}-\mathbf{q} \cdot \mathbf{v}\right) F_{\mathrm{DM}}^{2}(q)\left|n^{\prime} \ell^{\prime} m^{\prime}\right\rangle \propto \delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} \mathcal{I}_{n n^{\prime}}^{(\ell)}
$$

Applications

- Which detector orientations maximize or minimize a modulation signal?
- Propagate astro/materials uncertainties through the rate calculation
- Extract physics information (e.g. m_{x}) from details of a modulation signal
- Compare statistical power of different target materials
- Search for substructures in DM velocity distribution

Conclusion

- "Vector space" rate calculation is faster by many orders of magnitude for complicated analyses

For every...

- DM mass and $F_{D M}$ \# of integrals...
- velocity distribution $\longrightarrow N_{v} 3 \mathrm{~d}$ integrals $\left\langle g_{\chi} \mid n l m\right\rangle$
- detector form factor $\longrightarrow N_{q} 3$ d integrals $\left\langle n l m \mid f_{s}^{2}\right\rangle$
- detector orientation $\longrightarrow 0$ (Rotation matrices act on $Y_{l m}$)

For a total of: $10^{3} N_{v}+10^{2} N_{q} \sim 10^{6} \mathbf{3 d}$ integrals
Old way: about $10^{2} \mathbf{G P U}$-centuries
New way: CPU-days to tabulate $\left|g_{\chi}\right\rangle$ and $\left|f_{s}^{2}\right\rangle$
Minutes/hours for 10^{10} point calculation

- Coming soon to github and arXiv: VSDM and 2305.XXXXX

How to calculate DM-molecule scattering:

see arXiv:2103.08601
LCAO: Linear Combinations of Atomic Orbitals

A Complication: trans-stilbene crystals form unit cell with 4 components

III. Results

Crystal Form Factor

single molecule...

Results: Diatomic Molecules CO and $N_{2}(2208.09002)$

