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”“&“:Ti&t“il%m Motivation MLHAD

o °s o g . Hard process: initial high-energy interaction .
> W& e .' bt time/energy . perturbative
. T scale A Evolution: parton shower
v
-~ Hadronization: combine quarks and gluons }non—perturbative

First step: Create a Machine Learning (ML) Architecture that
Obard nteraction is able to reproduce the simplified Lund String Model

® resonance decays.

W matching/merging
FSR
ISR
QED

= vk v Goal: Train on experimental data and replace or
O multiparton interactions . . .

Brean e complement the Hadronization model in PYTHIA
msings

 primary hadrons
M secondary hadrons
W hadronic rescattering

MLHAD
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Two primary hadronization models are used

( ; / N\ A

t/‘ ‘ String model:

Iteratively split parton connected by QCD
l - color strings with linear potential

) Cluster model:
- pre-confine partons into proto-clusters,

string ) L cluster ) then split by two-body decays

= Lund-String model is used in PYTHIA
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CINCINNATI MLHAD Pipeline
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Stopping condition : E; < Eey

We need a generative model:
= Sample hadron kinematics: train on {pz, pT}

—=> Emission of different Mesons: Condition on mass (m) and energy (E)
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generated distribution true data distribution

B(x)

unit gaussian

generative
model

(neural net) ™, floss r

Source: generative models

= Task: Learn the probability distribution p(x) of the data

Which generative model should we choose?

Is it able to learn Do we have access to
complex the exact probability
distributions? distribution?
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Conditional Sliced Wasserstein (SW)
Autoencoder

x;—> Encoder | —2zi——| Decoder |— i

Lree
(Architecture used in SciPost Phys. 14, 027 (2023))

® SW distance enables learning any sampleable
latent distribution
=> Can learn complex distributions

® Decoder "just” generates samples
=> No access to the probability distribution

For simplicity, the previous MLHAD architecture

emits pions only
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Ungﬁg;,&%{n Generative Models MLHAD

Conditional Sliced Wasserstein (SW)
Autoencoder Normalizing Flow (NF)

itz . fisn(zi) i o Jelae) @ o

z;—| Encoder |—2;—| Decoder [—Z;

Lrec 20~ po(z0)

(Architecture used in SciPost Phys. 14, 027 (2023)) (Figure taken from github/janos/awesome-normalizing-flows )

® SW distance enables learning any sampleable ® Chain of invertible transformation f

latent distribution = Can learn complex distributions

| lex distributions )
= Can learn complex dis ® Distribution is obtained by change of variables

® Decoder "just” generates samples => Access to the exact probability distribution
=> No access to the probability distribution

For simplicity, the previous MLHAD architecture Updated MLHAD architecture can emit different
emits pions only mesons
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CINEINNATI Training Results cNF MLHAD

*Preliminary

Pythia NF

100 1.00+
0.751 0.75
éo.sw £0.50
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NFs, conditioned on different masses and energies, learn the correlation between p, and pr
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® Correlated uncertainties
® Statistical and training uncertainties

® Model uncertainties (not in this talk)
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¢ Correlated Uncertainties MLHAD

CINCINNATI
i
NFs can be used to capture correlated uncertainties
« Perturbed Generate multiple datasets
2000 Nominal with varied Pythia parameters
- to mimic correlated uncertainties
\
O 1000 / Error bands correspond
to varying bLund
0 a — parameters
0 10 20 30 40
Multiplicity
= We can reweight between error bands with the weight:
(1)
_ Prom(2)
w= H i
ppon(2)

youssead@ucmail.uc.edu
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CINCINNATI Reweighting with NFs MLHAD’ =
'
*Preliminary
0.150 l - Nominal Train nominal
Perturbed
Reweighted 1 NF, get
0125 ewelghted nominal I|ke||h00d
Train
bis afree - 0.100 Nominal: b — 0.98 perturbed NF,
parameterin % (o =0 get likelihood
the Lund 3 0.07 Perturbed: b = 0.80
function used Reweight
in Pythia: 0.05 nominal
StringZ:bLund output using
- ratio of
0.025 likelihoods
0.000-

10

15 20

Number of emissions

We can obtain multiple datasets without resampling using the correlated uncertainties

=> Much less time expensive than fully simulating with new parameters
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Cindinnar Statistical (and Training) Uncertainties MLH AD

Bayesian Neural Networks

, \ e
.7 I
® (Quantifies statistical and training uncertainty
) Gl Q /@ \Q |

® Modify network such:
\( — Weights are sampled from a distribution

.3 1.4

— Additional loss function for weight distribution

(Image source: The very Basics of Bayesian Neural Networks )
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* .
Preliminary
150 }
— p
1000 A Pythia {
\ Generated
4 =
£100 { f
A 50 }
Ol
250 \ | I
N i t
0 - = 0 = U
1.00 0.75 0.50 0.25  0.00 0.25 0.50 0.75 1.00 0 5 10 15 20
pr Number of emissions

Now we get errors on the kinematic distributions

= Can be used to estimate the statistical and training errors on observables
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® First MLHAD pipeline based on cSWAE was published in SciPost Phys. 14, 027 (2023)
® NFs overcome the limitations of cCSWAE - can emit in principle any meson and have access to pdf
® NFs allow us to reweight events and capture uncertainties
Work in progress
® Finalize normalizing flows architecture (include model uncertainty)
® PYTHIA reweighting (Release as part of Pythia)
® Flavor Selector

® Performing training on physically accessible observables to train MLHAD on experimental data
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Back up
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CINCINNATI

* Event generation is time-consuming, Event: 1 2 3 4 5 6

so we want to reweight events
without regenerating part

@
* We calculate event weights for 2 par=j
different hadronization optionsina | &
single Pythia event generation par=k
A T imeleerey Instead of generating three

samples with weight=1,
generate one sample with
weight=(1, w;, w,}

w=1ljg w=1Q8w=10Rw=1Q w=1 w=1
par=i Wi W; W Wi Wj W
Wi Wi Wi Wi Wi Wi
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® VAE is a commonly used generative model:
— Not flexible with the latent representation
— kl-divergence limits latent distribution to a simple analytical form (e.g. Gaussian)

Zq

L

x;—| Encoder | —>2; ——| Decoder |——;

ﬁrec

(a) Vanilla VAE
(arXiv: 1312.6114) (b) VAE latent space
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Samples from the given Encoded data samples
distribution, Z,~q; 7= (x;),x;~px

z;—| Encoder | —2%; —| Decoder |—Z;

£rec

(b) SWAE latent space
(a) cSWAE architecture (arXiv: 1804.01947 )

Total loss: L = Lyec + Lswo
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® conditioned on initial string energy £, — ¢, = (¢;,1 — ¢;):

_ — - Emax - E/
Ei = EminCi + Emax(1 - Ci) = 6= -
Emax - Emin
® Encoder ¢:
® |nput data x; is a N, = 100 dimensional vector, where x; € [pﬁ'l, p(T?k]
® p, and pr are uncorrelated and treated seperately
® Takes as input x; and ¢;; returns the latent space vector z; = (b(x” c,-)
® Decoder :
® Takes as input Z; and returns X; = ¥(&(x;, ¢;))
°

Limit the training on light quark flavors and only pions as final state hadrons
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x;—| Encoder |—=z2;— Decoder |[——x;

‘CI'GC
1 o 1y
Lree =D [0, 9((x,0))) + anlx, w((x,0)))|
tr =y
)\ L Ner
Lsw = ; Z asw (¢ - z,, 00 - P(x,, €i)),
=1 =1
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CINCINNATI cSWAE architecture MLHAD

T

Z;—| Encoder
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CINCINNATI

21 e y Zi > Zitl

20 ~ po(20) 2 ~ pr(zk)

® 7, is a random vector sampled from a simple distribution (usually a Gaussian) zy ~ po(zo)
® fis an invertable NN

® Calculate x by change of variables:

af Z,_1) -

Z/—1

pi(x) = po(20) H det

i=1
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Training Results cNF

MLHuAD

CINCINNATI
* . .
Preliminary
1 Target, m = 0.1 GeV 1 Target, m = 0.1 GeV
0.020 [ E=100.0 GeV 2.51 [ E=100.0 GeV
[ EF=400.0 GeV [ E=400.0 GeV
[ E=700.0 GeV 2.04 [ E=700.0GeV
0.015 [ E=1000.0 GeV [ E=1000.0 GeV
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* Preliminary
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