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Motivation
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Hard process: initial high-energy interaction

Evolution: parton shower

}
perturbative

Hadronization: combine quarks and gluons
}

non-perturbative

First step: Create a Machine Learning (ML) Architecture that

is able to reproduce the simplified Lund String Model

Goal: Train on experimental data and replace or

complement the Hadronization model in PYTHIA
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Hadronization Models

Two primary hadronization models are used

1

h1 h1

h2 h2

step 1

step 2

string cluster

String model:

Iteratively split parton connected by QCD

color strings with linear potential

Cluster model:

pre-confine partons into proto-clusters,

then split by two-body decays

⇒ Lund-String model is used in PYTHIA
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MLHAD Pipeline

We need a generative model:

⇒ Sample hadron kinematics: train on {pz, pT}
⇒ Emission of different Mesons: Condition on mass (m) and energy (E)

4 Normalizing flows and uncertainty quantification in hadronization youssead@ucmail.uc.edu



Generative Models

Source: generative models

⇒ Task: Learn the probability distribution p(x) of the data

Which generative model should we choose?

Is it able to learn

complex

distributions?

Do we have access to

the exact probability

distribution?
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Generative Models
Conditional Sliced Wasserstein (SW)

Autoencoder

1

(Architecture used in SciPost Phys. 14, 027 (2023))

••• SW distance enables learning any sampleable

latent distribution

⇒ Can learn complex distributions

• Decoder ”just” generates samples

⇒ No access to the probability distribution

For simplicity, the previous MLHAD architecture

emits pions only

Normalizing Flow (NF)

1

(Figure taken from github/janos/awesome-normalizing-flows )

••• Chain of invertible transformation f

⇒ Can learn complex distributions

• Distribution is obtained by change of variables

⇒ Access to the exact probability distribution

nothing

Updated MLHAD architecture can emit different

mesons
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Training Results cNF
∗Preliminary

NFs, conditioned on different masses and energies, learn the correlation between pz and pT
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Uncertainty Quantification

• Correlated uncertainties

• Statistical and training uncertainties

• Model uncertainties (not in this talk)
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Correlated Uncertainties

NFs can be used to capture correlated uncertainties
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Reweighting with NFs
∗Preliminary

We can obtain multiple datasets without resampling using the correlated uncertainties

⇒ Much less time expensive than fully simulating with new parameters
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Statistical (and Training) Uncertainties

Bayesian Neural Networks

1

(Image source: The very Basics of Bayesian Neural Networks )

• Quantifies statistical and training uncertainty

• Modify network such:

→ Weights are sampled from a distribution

→ Additional loss function for weight distribution
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Bayesian NF Results

∗Preliminary
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Now we get errors on the kinematic distributions

⇒ Can be used to estimate the statistical and training errors on observables
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Conclusion and Outlook

• First MLHAD pipeline based on cSWAE was published in SciPost Phys. 14, 027 (2023)

• NFs overcome the limitations of cSWAE - can emit in principle any meson and have access to pdf

• NFs allow us to reweight events and capture uncertainties

Work in progress

• Finalize normalizing flows architecture (include model uncertainty)

• PYTHIA reweighting (Release as part of Pythia)

• Flavor Selector

• Performing training on physically accessible observables to train MLHAD on experimental data
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Back up
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Reweighting
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VAE

• VAE is a commonly used generative model:

→ Not flexible with the latent representation

→ kl-divergence limits latent distribution to a simple analytical form (e.g. Gaussian)

(a) Vanilla VAE
(arXiv: 1312.6114 ) (b) VAE latent space
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cSWAE

(a) cSWAE architecture
(b) SWAE latent space

(arXiv: 1804.01947 )

Total loss: L = Lrec + LSWD
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cSWAE Training-process

• conditioned on initial string energy Ei → ci = (c̄i , 1 − c̄i):

Ei = Eminc̄i + Emax(1 − c̄i) ⇒ c̄i =
Emax − Ei

Emax − Emin

• Encoder ϕ:

• Input data xi is a Ne = 100 dimensional vector, where xi ∈ [p
(i)
z,k , p

(i)
T ,k ]

• pz and pT are uncorrelated and treated seperately
• Takes as input xi and ci ; returns the latent space vector z̄i = ϕ(xi , ci)

• Decoder ψ:
• Takes as input z̄i and returns x̄i = ψ(ϕ(xi , ci))

• Limit the training on light quark flavors and only pions as final state hadrons
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cSWAE architecture

Lrec =
1

Ntr

Ntr∑
i=1

[ 1

Q
d2

2 (xi ,ψ(ϕ(xi , ci))) + d1(xi ,ψ(ϕ(xi , ci)))
]
,

LSW =
λ

LNtr

L∑
ℓ=1

Ntr∑
i=1

dSW(θℓ · z[i]ℓ ,θℓ · ϕ(x[i]ℓ , ci)),
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cSWAE architecture

20 Normalizing flows and uncertainty quantification in hadronization youssead@ucmail.uc.edu



NFs

• z0 is a random vector sampled from a simple distribution (usually a Gaussian) z0 ∼ p0(z0)

• f is an invertable NN

• Calculate x by change of variables:

pk(x) = p0(z0)
K∏

i=1

∣∣∣∣det

(
∂fi(zi−1)

∂zi−1

) ∣∣∣∣−1
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Training Results cNF
∗Preliminary
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Hadron Multiplicity vs String Energy (cNF)
∗ Preliminary
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