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History of Boosted object tagging

1. Using cuts on multiple High-Level (HL) features
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History of Boosted object tagging

2. Using a set of high-level features as inputs to BDT or DNN
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History of Boosted object tagging

3. Use low-level features directly as inputs to neural networks

State of the art Neural Networks
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Previously on top tagging ....

HL feature taggers haven’t been able to keep up with low-level feature taggers

R3¢
(Rejection
factor at
30% true
positive
rate)

2400 A PELICAN
® LLF taggers @] Lorentznet
® HLF taggers [
2000 A
icleNet ParT
1600
o 'ParticIeNet-lite
< - ResNeXt
1200 TreeNiN NN O
5 Nsube .PtNLD N EFPs @
S0 6Nsub® “gf " e BN
.EF P-CNN
Linear EFPs
400 @ TopbDNN
® LDA
0 T r — T T Lnrr] T — T T T L LI B B L AL |
103 104 10° 106

Parameters

The Machine Learning Landscape of Top
Taggers: arXiv:1902.09914v3

Particle Transformer for Jet Tagging
arXiv:2202.03772

An Efficient Lorentz Equivariant Graph
Neural Network for Jet Tagging:
arXiv:2201.08187v5

ParticleNet: Jet Tagging via Particle
Clouds: arXiv:1902.08570v3

Mapping Machine-Learned Physics into a
Human-Readable Space arXiv:2010.11998

Reports of My Demise Are Greatly
Exaggerated: N-subjettiness Taggers
Take On Jet Images: arXiv:1807.04769

How Much Information is in a Jet?:
arXiv:1704.08249v2

A complete linear basis for jet
substructure: arXiv:1712.07124

PELICAN: Permutation Equivariant and

Lorentz Invariant or Covariant Aggregator
Network for Particle

arXiv:2211.00454
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Why should we go back to high-level (HL) features?

Can build a more efficient model with less parameters
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e High-level features are
more interpretable.

e Faster evaluation
e More resource efficient

* Features can be more
robust and easier to
calibrate and validate
between simulated and
experimental data.



Feature Selection

is the process of selecting a subset of useful features to use in model construction/training.

How to do Feature Selection?

* Know which features are useful!
* Use a feature selection algorithm.

Feature selection Algorithm

* Given a large number of features, a feature selection algorithm can select a few useful
features based on a relevance score assigned to each feature. We use our score as a
measure of correlation between each of our features and truth labels.

* The score ranks features which are more useful than the others !



Overview of a Forward Feature Selection (FFS)

algorithm
Step 2: Find subset
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Application of the algorithm to top tagging

- Data set: The Machine Learning Landscape of Top Taggers
(arXiv:1902.09914v3). (10.5281/zenodo.2603255)

« 2M jets: Signal and Background, with only Energy-momentum
four vectors.

* Training set (1.2 M), validation set (400k), and test set (400k)

* The algorithm is applied to the combined training and
validation set, and the metric is evaluated on the test
set.
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Application of the algorithm to top tagging

» Metric used: R34, (Rejection factor at 30% true positive rate) is
evaluated on a test set (400k events)
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Features: Energy Flow Polynomials (EFPs)

withd < 7, with k = [—1, O,%, 1, 2] and [ = E, 1, 2] , 7350 features
Large set of features, which are functions of:
« z, : The momentum fraction of of jet constituent a

* 0,,. Angular separation between jet
constituents a and b
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Energy flow polynomials: A complete linear basis for jet substructure

ADO method: Mapping Machine-Learned Physics into a Human-Readable Space
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Features: Energy Flow Polynomials (EFPs)
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Energy flow polynomials: A complete linear basis for jet substructure
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 We train a Neural network with an initial set of features:
E initial ~ {m] y PT ]’ mW—candidate}

e We select data points with a specific window around classifier
output value 0.5, as points where the classifier is most
confused. (we call X, our confusion set)
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e On X, we evaluate:
DisCo(yres, [known variables, new feature]) for each

feature in the feature subspace.

Relevance Score : Distance Correlation (DisCo)

e DisCois used to find value of non-linear correlations of the EFPs with

the reference label.
* Very powerful since we can quantify correlations between reference

labels and multiple features.

DisCo Fever: Robust Networks Through Distance Correlation:
Brownian distance covariance:
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Relevance Score : Distance Correlation (DisCo)
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Reference label: Truth label or state-of the art model

* In a truth-guided approach, the truth labels are used as the
Reference label get the best possible tagger.

* In a state-of the art model-guided approach we use the
LorentzNet (one of the highest performing top-taggers with a
R;, of 2195) as the reference label. The features selected can
be used to explain “What the machine learned?”

An Efficient Lorentz Equivariant Graph Neural Network for Jet Tagging: arXiv:2201.08187v5



https://arxiv.org/abs/2201.08187v5

e The feature with the highest DisCo value is
added to the list of known features, and a
new Neural Network is trained using the
new set of features.




* Variance for each method is obtained by training each network
10 times.
* Our method can obtain an R3y of 1249 + 43, after 9 features.

Truth-guided

Performance
after addition of
new EFPs using
feature selection
algorithm

—— DisCo-FFS
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1400

Baseline: Random
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A feature selection algorithm should perform better than
randomly selecting features.
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e A previous feature selection method, which relies on
Decision ordering (DO) for finding subset of data where a
classifier orders signal/background differently from the
truth labels.

e Use Average Decision Ordering (ADO) between EFPs and
the truth, as the score

Comparison to a
previous feature
selection algorithm

DO-ADO (truth)

800 A

Truth-guided

R3o

600 -

400 -

—— DisCo-FFS
—— DO-ADO-FFS

200 A —— random selection
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Iteration

ADO method: Mapping Machine-Learned Physics into a Human-Readable Space arXiv:2010.11998

21


https://arxiv.org/abs/2010.11998

Comparison to
LorentzNet guided

feature selection

An Efficient Lorentz
Equivariant Graph
Neural Network for Jet

Tagging:
arXiv:2201.08187v5

DisCo-FFS has a similar performance for both the
truth-guided and LorentzNet guided approach
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200 A random selection
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Features added

DO-ADO has better performance for LorentzNet
guided approach, as compared to truth guided
approach (as noted in arXiv:2010.11998)
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Comparison to
other top taggers

The Machine Learning Landscape of Top
Taggers: arXiv:1902.09914v3

Particle Transformer for Jet Tagging:
arXiv:2202.03772

An Efficient Lorentz Equivariant Graph
Neural Network for Jet Tagging:
arXiv:2201.08187v5

ParticleNet: Jet Tagging via Particle
Clouds: arXiv:1902.08570v3

Mapping Machine-Learned Physics into a
Human-Readable Space arXiv:2010.11998

Reports of My Demise Are Greatly
Exaggerated: N-subjettiness Taggers
Take On Jet Images: arXiv:1807.04769

How Much Information is in a Jet?:
arXiv:1704.08249v2

A complete linear basis for jet
substructure: arXiv:1712.07124

PELICAN: Permutation Equivariant and
Lorentz Invariant or Covariant Aggregator
Network for Particle Physics

arXiv:2211.00454

Our method achieves state of the art
performance with only a very small fraction of
the parameters!
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Our feature selected model, outperforms the ParticleNet,

and matches the LorentzNet, when trained on less training
data.
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*We use the features, which were selected using the larger dataset.

An Efficient Lorentz Equivariant Graph Neural Network for Jet Tagging: arXiv:2201.08187v5
ParticleNet: Jet Tagging via Particle Clouds: arXiv:1902.08570v3 24
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Robustness of
DisCo-FFS

On 5 independent trails of doing
DisCo-FFS selects the same first 6
features in every trial.

Chromatic number (c) is a proxy for
number of prongs in a jet

5 of the first 6 EFPs have c=3, which
means our algorithm selects features
which probe the 3-prong substructure
which is relevant for top-tagging.
One of them is probe of 2-prong
substructure.
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In 5 trials of DisCo-FFS,
the first 6 features are
stable and show a sharp

rise to Rz, =1200 !!

— trials 1-5
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trial 3
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trial 5

feature
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unique possible paths taken by DisCo-
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1150 -+
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- _ % 1100 A
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Conclusion

* Using a Disco based feature selection for the case of top tagging, we were
able to obtain a handful of input features, which gave a very competitive
performance, given the number of parameters.

* EFPs selected could make for a very lightweight and performant top tagger,
which could have important applications to triggering (arXiv:1804.06913)

Possible reasons for not getting a better performance:

* The feature space considered could be insufficient for top tagging, which
could explain our inability to close the gap with higher performing black
box models.

* Need a better feature selection algorithm?
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W-jets validation
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Instead of calculating score on full data, the selection of
the confusion set improves the performance!

1400
= window 0.3to 0.7
1200 - ~ window 0.4 to 0.6
= window 0.2 to 0.8
- window 0.1to 0.9
1000 = window 00to 1l
- random selection
800 A
b
(vl
600 -
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200 -
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Features added

The classifier output window 0.3 to 0.7 was optimal for the case of top-tagging
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DO-ADO

DO(f(x),g(x)) =0((f(xs) — f(xp) (g(xs) — g(xp)), where s refers to signal, and b refers
to background.

DO is a measure of relative ordering f (x) with respect to g(x), for a single signal-background
pair .

Same ordering gives DO=1, whereas different ordering leads to DO=1. Eg: DO = 1, if f(x,) >

f(xp) and g(xs) > g(xp), whereas DO = 0, if f(x5) > f(x) and g(x5) > g(xp)

Average Decision Ordering (ADO) is the average value of DO over a sample of signal-
background pairs.




Random Selection
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Affine Invariant Distance Correlation (DisCo)

It has some nice properties:

Zero iff X, Y are independent, positive otherwise.

Can quantify non-linear correlations between 2 unequal sets of features
XandY.

Is invariant under linear rescaling of features in each set Xand Y
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Step 2: Find a subset Xy, with data points
where the classifier is most confused

Our method using

. e We select data points with a specific window around classifier
D|Sta nce output value 0.5, as points where the classifier is most

: : confused.
Correlation (DisCo) ;

* Selects a subsample of signal-background pairs with DO (y,
ytruth/blackboxy — ( je, signal-background pairs for which the
classifier output, which is different relative to the truth labels

(y"¥t") or a blackbox classifier output (y?!ackbo*) with a high-
performance score.

DO-ADO method




Step 3: Use a score to rank the features
over the subset X,

O e e IR o On X, we evaluate, DisCo (y T, [initial/
Distance known variables, new feature]) for each

Correlation (DisCo) feature in the feature subspace.

e On X, evaluate,
ADO(y truth/background, new feature)

DO-ADO method




