
Feature Selection with Distance 
correlation

with
David Shih & Gregor Kasieczka

Ranit Das
ranit@physics.rutgers.edu

Based on arXiv:2212.00046

Date: 05/08/2023

Pheno 2023

https://arxiv.org/abs/2212.00046


Outline

Motivation for feature selection

Feature selection algorithm using DisCo

Application to Top Tagging

Results

Conclusion

2



History of Boosted object tagging

It’s a top 
quark!

Output

Interpretable High 
Level input 

features

m

A feature 
which probes 
3 prong 
substructure

Cuts on multiple high-level 
features

Model

1.   Using cuts on multiple High-Level (HL) features

Uninterpretable 
Low level jet 
constituents

𝜏!"

3



It’s a 
top 
quark!

Classifier output

Models

DNNBDT o
r

2.   Using a set of high-level features as inputs to BDT or DNN

or
𝑝#

⁞

m

𝜏!"

Interpretable High 
Level input 

features

History of Boosted object tagging

Uninterpretable 
Low level jet 
constituents

4



3.   Use low-level features directly as inputs to neural networks

It’s a top quark!

State of the art Neural Networks

Classifier output

History of Boosted object tagging

Uninterpretable 
Low level jet 
constituents
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Previously on top tagging ....

The Machine Learning Landscape of Top 
Taggers:  arXiv:1902.09914v3
Particle Transformer for Jet Tagging: 
arXiv:2202.03772

An Efficient Lorentz Equivariant Graph 
Neural Network for Jet Tagging:  
arXiv:2201.08187v5
ParticleNet: Jet Tagging via Particle
Clouds: arXiv:1902.08570v3

Mapping Machine-Learned Physics into a 
Human-Readable Space arXiv:2010.11998

Reports of My Demise Are Greatly 
Exaggerated: N-subjettiness Taggers 
Take On Jet Images: arXiv:1807.04769

How Much Information is in a Jet?: 
arXiv:1704.08249v2
A complete linear basis for jet 
substructure: arXiv:1712.07124
PELICAN: Permutation Equivariant and 
Lorentz Invariant or Covariant Aggregator 
Network for Particle 
arXiv:2211.00454

HL feature taggers haven’t been able to keep up with low-level feature taggers

𝑹𝟑𝟎
(Rejection 
factor at 
30% true 
positive 
rate) 

6

https://arxiv.org/abs/1902.09914v3
https://arxiv.org/abs/2201.08187v5
https://arxiv.org/abs/1902.08570v3
https://arxiv.org/abs/2010.11998
https://arxiv.org/abs/1807.04769
https://arxiv.org/abs/1704.08249v2
https://arxiv.org/abs/1712.07124


Why should we go back to high-level (HL) features?
Can build a more efficient model with less parameters

• High-level features are 
more interpretable.

• Faster evaluation
• More resource efficient
• Features can be more 

robust and easier to 
calibrate and validate 
between simulated and 
experimental data. 
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is the process of selecting a subset of useful features to use in model construction/training.

How to do Feature Selection?
• Know which features are useful! 
• Use a feature selection algorithm.

Feature Selection

Feature selection Algorithm
• Given a large number of features, a feature selection algorithm can select a few useful 
features based on a relevance score assigned to each feature. We use our score as a 
measure of correlation between each of our features and truth labels.
• The score ranks features which are more useful than the others !
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Overview of a Forward Feature Selection (FFS) 
algorithm

Start with an 
initial set of 

known features

Step1: Train a neural 
network on the 

known features and 
obtain a classifier.

Step 2: Find subset of 
data points 𝑋$, where 
the classifier is most 

confused

Step 3: Assign a 
relevance score to each 

feature, based on a 
reference label, on that 

subset 𝑋$

Step 4: Add the 
feature with the 

highest score to the 
initial set of known 

features

Repeat until the 
chosen 

performance 
metric saturates



• Data set: The Machine Learning Landscape of Top Taggers 
(arXiv:1902.09914v3). (10.5281/zenodo.2603255)
• 2M jets: Signal and Background, with only Energy-momentum 
four vectors.
• Training set (1.2 M), validation set (400k), and test set (400k)
• The algorithm is applied to the combined training and 
validation set, and the metric is evaluated on the test 
set.

Application of the algorithm to top tagging
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• Metric used: 𝑅$% (Rejection factor at 30% true positive rate) is 
evaluated on a test set (400k events)

• Initial set of features: 𝑚& , 𝑝'& , 𝑚()*+,-.-+/0

Application of the algorithm to top tagging
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Large set of features, which are functions of:

• 𝑧+ : The momentum fraction of of jet constituent 𝑎
• 𝜃+1:  Angular separation between jet 

constituents 𝑎 and 𝑏

𝑧+
(3) =

𝑝'!
Σ1𝑝'"

3

𝜃(") = Δ 𝜂$%& + Δ𝜙$%&
!
"

Energy flow polynomials: A complete linear basis for jet substructure: arXiv:1712.07124
ADO method: Mapping Machine-Learned Physics into a Human-Readable Space arXiv:2010.11998

Features: Energy Flow Polynomials (EFPs)
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Features: Energy Flow Polynomials (EFPs)

• Each node :  ∑$ z'
• Each edge :   𝜃$%

=    ∑$ 𝑧$ ∑% 𝑧% ∑( 𝑧( ∑) 𝑧) 𝜃$%𝜃$(𝜃$)𝜃%(𝜃%)𝜃()

Energy flow polynomials: A complete linear basis for jet substructure: arXiv:1712.07124 13

https://arxiv.org/abs/1712.07124


• We select data points with a specific window around classifier 
output value 0.5, as points where the classifier is most 
confused. (we call 𝑿𝟎 our confusion set)

Step 2: Find a subset 𝑋", with 
data points where the 
classifier is most confused

Confusion set 𝑿𝟎
Data points where the 
classifier most confused

• We train a Neural network with an initial set of features: 
𝐹&'&(&)* = {𝑚+, 𝑝#+ , 𝑚,-.)'/&/)(0}

Step1: Train a neural network 
on the known features and 
obtain a classifier.
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• On 𝑋$ we evaluate:
𝐷𝑖𝑠𝐶𝑜(𝑦102, [𝑘𝑛𝑜𝑤𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠, 𝑛𝑒𝑤 𝑓𝑒𝑎𝑡𝑢𝑟𝑒]) for each 
feature in the feature subspace. 

Step 3: Assign a relevance 
score to each feature, based 
on reference label, on that 

subset 𝑋"

Relevance Score : Distance Correlation (DisCo)

• DisCo is used to find value of non-linear correlations of the EFPs with 
the reference label.

• Very powerful since we can quantify correlations between reference 
labels and multiple features.

DisCo Fever: Robust Networks Through Distance Correlation: arXiv:2001.05310
Brownian distance covariance: arXiv:1010.0297 15

https://arxiv.org/abs/2001.05310
https://arxiv.org/abs/1010.0297


Relevance Score : Distance Correlation (DisCo)

Pearson Correlation DisCo

Images from Wikipedia 16
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Reference label: Truth label or state-of the art model

• In a truth-guided approach, the truth labels are used as the 
Reference label get the best possible tagger.

• In a state-of the art model-guided approach we use the 
LorentzNet (one of the highest performing top-taggers with a 
𝑅*+ of 2195) as the reference label. The features selected can 
be used to explain “What the machine learned?”

An Efficient Lorentz Equivariant Graph Neural Network for Jet Tagging:  arXiv:2201.08187v5

https://arxiv.org/abs/2201.08187v5


• The feature with the highest DisCo value is 
added to the list of known features, and a 
new Neural Network is trained using the 
new set of features.

Step 4: Add the 
feature with the 
highest score to the 
initial set of known 
features
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Performance 
after addition of 
new EFPs using 
feature selection 
algorithm

• Variance for each method is obtained by training each network 
10 times.

• Our method can obtain an 𝑅!$ of 1249 ± 43, after 9 features.
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Baseline: Random 
selection of features

A feature selection algorithm should perform better than 
randomly selecting features. 
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Truth-guided



Comparison to a 
previous feature 
selection algorithm
DO-ADO (truth)

• A previous feature selection method, which relies on 
Decision ordering (DO) for finding subset of data where a 
classifier orders signal/background differently from the 
truth labels.

• Use Average Decision Ordering (ADO) between EFPs and 
the truth, as the score

ADO method: Mapping Machine-Learned Physics into a Human-Readable Space arXiv:2010.11998
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Truth-guided

https://arxiv.org/abs/2010.11998


DisCo-FFS has a similar performance for both the 
truth-guided and LorentzNet guided approach
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DO-ADO has better performance for LorentzNet
guided approach, as compared to truth guided 
approach (as noted in arXiv:2010.11998)

Comparison to 
LorentzNet guided 
feature selection

An Efficient Lorentz 
Equivariant Graph 
Neural Network for Jet 
Tagging:  
arXiv:2201.08187v5

https://arxiv.org/abs/2010.11998
https://arxiv.org/abs/2201.08187v5
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The Machine Learning Landscape of Top 
Taggers:  arXiv:1902.09914v3
Particle Transformer for Jet Tagging: 
arXiv:2202.03772
An Efficient Lorentz Equivariant Graph 
Neural Network for Jet Tagging:  
arXiv:2201.08187v5
ParticleNet: Jet Tagging via Particle
Clouds: arXiv:1902.08570v3
Mapping Machine-Learned Physics into a 
Human-Readable Space arXiv:2010.11998
Reports of My Demise Are Greatly 
Exaggerated: N-subjettiness Taggers 
Take On Jet Images: arXiv:1807.04769
How Much Information is in a Jet?:
arXiv:1704.08249v2
A complete linear basis for jet 
substructure: arXiv:1712.07124
PELICAN: Permutation Equivariant and 
Lorentz Invariant or Covariant Aggregator 
Network for Particle Physics
arXiv:2211.00454

Our method achieves state of the art 
performance with only a very small fraction of 
the parameters!

https://arxiv.org/abs/1902.09914v3
https://arxiv.org/abs/2201.08187v5
https://arxiv.org/abs/1902.08570v3
https://arxiv.org/abs/2010.11998
https://arxiv.org/abs/1807.04769
https://arxiv.org/abs/1704.08249v2
https://arxiv.org/abs/1712.07124


Sample Efficiency
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An Efficient Lorentz Equivariant Graph Neural Network for Jet Tagging:  arXiv:2201.08187v5
ParticleNet: Jet Tagging via Particle Clouds: arXiv:1902.08570v3

Our feature selected model, outperforms the ParticleNet, 
and matches the LorentzNet, when trained on less training 
data.

*We use the features, which were selected using the larger dataset.

https://arxiv.org/abs/2201.08187v5
https://arxiv.org/abs/1902.08570v3


Robustness of 
DisCo-FFS

# Graphs c 𝜿 𝜷
1 3 2 1

3 2 1

3 2 0 1
• On 5 independent trails of doing 

DisCo-FFS selects the same first 6 
features in every trial.

• Chromatic number (c) is a proxy for 
number of prongs in a jet

• 5 of the first 6 EFPs have c=3 , which 
means our algorithm selects features 
which probe the 3-prong substructure 
which is relevant for top-tagging.

• One of them is probe of 2-prong 
substructure.
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# Graphs c 𝜿 𝜷
4 3 1 0.5

3 1 1

3 2 0.5

In 5 trials of DisCo-FFS, 
the first 6 features are 
stable and show a sharp 
rise to 𝑅#$ =1200 !!



Robustness of 
DisCo-FFS

# Graphs c 𝜿 𝜷
7 4 0.5 0.5

3 1 1

• After the 6th iteration, we see some 
degree of randomness, as we see two 
unique possible paths taken by DisCo-
FFS in the 7th and 8th iteration, and 
after the 9th iteration it selects 5 
different features.

• In Path 1, the first feature it selects 
probes 4-prong substructure, followed 
by a feature which probes 3-prong 
substructure

• In Path 2, it selects 2 features which 
probe 2-prong substructure.
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# Graphs c 𝜿 𝜷
7 2 0 0.5

2 2 2

Path 2Path 1

5 trials of DisCo-FFS take 
different paths to achieve 
a similar 
𝑅#$ of around 1250



Conclusion
• Using a Disco based feature selection for the case of top tagging, we were 

able to obtain a handful of input features, which gave a very competitive 
performance, given the number of parameters.

• EFPs selected could make for a very lightweight and performant top tagger, 
which could have important applications to triggering (arXiv:1804.06913)

Possible reasons for not getting a better performance:
• The feature space considered could be insufficient for top tagging, which 

could explain our inability to close the gap with higher performing black 
box models.  

• Need a better feature selection algorithm?
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Thank You!
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BACK UP SLIDES
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W-jets validation
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Instead of calculating score on full data, the selection of 
the confusion set improves the performance! 

The classifier output window 0.3 to 0.7 was optimal for the case of top-tagging



DO-ADO

𝐷𝑂(𝑓 𝑥 , 𝑔(𝑥)) = Θ((𝑓 𝑥3 − 𝑓 𝑥4 (𝑔 𝑥3 − 𝑔(𝑥4)), where 𝑠 refers to signal, and 𝑏 refers 
to background.

𝐷𝑂 is a measure of relative ordering 𝑓 𝑥 with respect to 𝑔(𝑥), for a single signal-background 
pair . 

Same ordering gives DO=1, whereas different ordering leads to DO=1 . Eg: 𝐷𝑂 = 1, if 𝑓 𝑥3 >
𝑓 𝑥4 and 𝑔 𝑥3 > 𝑔 𝑥4 , whereas 𝐷𝑂 = 0, if 𝑓 𝑥3 > 𝑓 𝑥4 and 𝑔 𝑥3 > 𝑔 𝑥4

Average Decision Ordering (ADO) is the average value of DO over a sample of signal-
background pairs.
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Random Selection



Affine Invariant Distance Correlation (DisCo)

Zero iff X, Y are independent, positive otherwise.

Can quantify non-linear correlations between 2 unequal sets of features 
X and Y.

Is invariant under linear rescaling of features in each set X and Y

It has some nice properties:

Measuring and testing dependence by correlation of distances: arXiv:0803.4101 34

https://arxiv.org/abs/0803.4101


Step 2: Find a subset 𝑋!, with data points 
where the classifier is most confused

• We select data points  with a specific window around classifier 
output value 0.5, as points where the classifier is most 
confused. 

Our method using 
Distance 
Correlation (DisCo)

• Selects a subsample of signal-background pairs with 𝐷𝑂(𝑦,
𝑦%&'%(/*+,-.*/0) = 0, i.e, signal-background pairs for which the 
classifier output, which is different relative to the truth labels 
(𝑦%&'%() or a blackbox classifier output (𝑦*+,-.*/0) with a high-
performance score. 

DO-ADO method
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Step 3: Use a score to rank the features 
over the subset 𝑋!

• On 𝑋# we evaluate, 𝐷𝑖𝑠𝐶𝑜 (𝑦$%&$', [𝑖𝑛𝑖𝑡𝑖𝑎𝑙/
𝑘𝑛𝑜𝑤𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠, 𝑛𝑒𝑤 𝑓𝑒𝑎𝑡𝑢𝑟𝑒]) for each 
feature in the feature subspace.  

Our method using 
Distance 

Correlation (DisCo)

• On 𝑋# evaluate, 
𝐴𝐷𝑂(𝑦$%&$'/)*+,-%.&/0, 𝑛𝑒𝑤 𝑓𝑒𝑎𝑡𝑢𝑟𝑒)DO-ADO method
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