MadNIS – MadGraph Neural Importance Sampling

Theo Heimel May 2023

Institut für theoretische Physik Universität Heidelberg

[<u>2212.06172</u>] TH, Winterhalder, Butter, Isaacson, Krause, Maltoni, Mattelaer, Plehn [23xx.xxxxx] TH, Winterhalder, Maltoni, Mattelaer, Plehn

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Introduction

How can we prevent MC event generation from becoming a bottleneck in future LHC runs?

Introduction

How can we prevent MC event generation from becoming a bottleneck in future LHC runs?

 $I = \int \mathrm{d}x \, f(x)$

 $I = \int \mathrm{d}x \, f(x)$

VEGAS algorithm

[G. P. Lepage, 1978]

VEGAS algorithm

① Computationally cheap

 High-dim and rich peaking functions \rightarrow slow convergence

Peaks not aligned with grid axes \rightarrow phantom peaks

[G. P. Lepage, 1978]

Normalizing Flows

Flows for NIS: [Gao et al, 2001.05486] [Gao et al, 2001.10028] [Bothmann et al, 2001.05478]

sampling

 $I = \sum_{i} \left\langle \alpha_{i}(x) \frac{f(x)}{g_{i}(x)} \right\rangle_{x \sim g_{i}(x)}$

 $I = \sum_{i} \left\langle \right\rangle$

Use physics knowledge to construct channels and mappings

$$\left. \alpha_i(x) \frac{f(x)}{g_i(x)} \right\rangle_{x \sim g_i(x)}$$

Normalizing Flow to refine channel mappings

$$\left. \alpha_{i}(x) \frac{f(x)}{g_{i}(x)} \right\rangle_{x \sim g_{i}(x)}$$

Use physics knowledge to construct channels and mappings

Fully connected network to refine channel weights

MadNIS: Overview

Initialization

Buffered Trainable Training Rotations

MadNIS: Overview

Buffered Training

Trainable Rotations

Buffered Training

Buffered Training

Buffered Training

VEGAS Initialization

	VEGAS	Flow
Training	Fast	Slow
Correlations	No	Yes

Combine advantages:

Pre-trained VEGAS grid as starting point for flow training

VEGAS Initialization

	VEGAS	Flow
Training	Fast	Slow
Correlations	No	Yes

Combine advantages:

Pre-trained VEGAS grid as starting point for flow training

Learned distribution matches truth

Learned distribution matches truth

Learned distribution matches truth

 $uc \to W^+W^+ds$

Significant improvement from trained channel weights

Buffered training: small effect on performance, much faster training

Significant improvement from trained channel weights

LHC Example: W + 2 jets

Process has small interference terms \rightarrow no significant improvement from trained channel weights

Otherwise similar to results for VBS

Outlook

Upcoming paper

Detailed comparison between MadNIS and standard MadGraph

- \rightarrow more LHC processes
- \rightarrow scaling with jet multiplicity
- \rightarrow runtime comparison
- → test MadNIS features
 - Stay tuned!

Outlook

Upcoming paper

Detailed comparison between MadNIS and standard MadGraph

- \rightarrow more LHC processes
- \rightarrow scaling with jet multiplicity
- \rightarrow runtime comparison
- → test MadNIS features
 - Stay tuned!

Appendix

Single channel *i*

Neural Channel Weights

Prior Channel Weights

Neural Channel Weights

Residual Block

Add prior

$$\alpha_i(x \mid \theta) = \log \frac{\beta_i(x)}{\beta_i(x)} + \Delta_i(x \mid \theta)$$

Normalization

$$\alpha_i(x \mid \theta) \to \hat{\alpha}_i(x \mid \theta) = \frac{\beta_i(x) \exp \Delta_i}{\sum_j \beta_j(x) \exp \Delta_j}$$

$$\beta_i(x) =$$

Prior Channel Weights

Neural Importance Sampling

Phase space

SymFI Multi-Channel

