MadNIS - MadGraph Neural Importance Sampling

Theo Heimel
May 2023
Institut für theoretische Physik Universität Heidelberg

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386
[2212.06172] TH, Winterhalder, Butter, Isaacson, Krause, Maltoni, Mattelaer, Plehn
[23xx.xxxxx] TH, Winterhalder, Maltoni, Mattelaer, Plehn

Introduction

How can we prevent MC event generation from becoming a bottleneck in future LHC runs?

Introduction

How can we prevent MC event generation from becoming a bottleneck in future LHC runs?

Differential cross section
known from QFT:
$\mathrm{d} \sigma \sim \operatorname{pdf}(x) \cdot|\mathscr{M}(x)|^{2} \cdot \mathrm{~d} \Phi$
Total cross section:

$$
\sigma=\int_{\Phi} \mathrm{d} \sigma
$$

Monte Carlo integration and sampling from differential cross section \downarrow
accelerate with deep generative models

Exact sampling ensured by known likelihood
\downarrow
better model
=
faster sampling

Monte Carlo Integration

$$
I=\int \mathrm{d} x f(x)
$$

Monte Carlo Integration

Monte Carlo Integration

Monte Carlo Integration

VEGAS algorithm

Factorize probability $p(x)=p\left(x_{1}\right) \cdots p\left(x_{n}\right)$

Fit bins with equal probability and varying width

VEGAS algorithm

Factorize probability

$$
p(x)=p\left(x_{1}\right) \cdots p\left(x_{n}\right)
$$

Fit bins with equal probability and varying width

\oplus Computationally cheap
Θ High-dim and rich peaking functions \rightarrow slow convergence
Θ Peaks not aligned with grid axes \rightarrow phantom peaks

Normalizing Flows

Chain of invertible, learnable transformations with exact likelihood from change of variables formula

$$
\log p\left(z_{n} \mid c\right)=\log p\left(z_{1}\right)+\log \operatorname{det} \frac{\partial z_{1}\left(z_{n} ; c\right)}{\partial z_{n}}
$$

training on samples

MadNIS: Neural Importance Sampling

$$
I=\sum_{i}\left\langle\alpha_{i}(x) \frac{f(x)}{g_{i}(x)}\right\rangle_{x \sim g_{i}(x)}
$$

MadNIS: Neural Importance Sampling

$$
I=\sum_{i}\left\langle\alpha_{i}(x) \frac{f(x)}{g_{i}(x)}\right\rangle_{x \sim g_{i}(x)}
$$

Use physics knowledge to construct channels and mappings

MadNIS: Neural Importance Sampling

$$
I=\sum_{i}\left\langle\alpha_{i}(x) \frac{f(x)}{g_{i}(x)}\right\rangle_{x \sim g_{i}(x)}
$$

Use physics knowledge to construct channels and mappings

Normalizing Flow to refine channel mappings

Fully connected network to refine channel weights

MadNIS: Neural Importance Sampling

$$
I=\sum_{i}\left\langle\alpha_{i}(x) \frac{f(x)}{g_{i}(x)}\right\rangle_{x \sim g_{i}(x)}
$$

Use physics knowledge to construct channels and mappings

Normalizing Flow to refine channel mappings

Fully connected network to refine channel weights

Optimize simultaneously with integral variance as loss function

MadNIS: Overview

Basic functionality

Improved Multichanneling

Improved training

MadNIS: Overview

Basic functionality

Improved Multichanneling

Improved training

Overflow
Channels

Symmetries
between
channels

Stratified

Sampling/

Conditional flows

Buffered Training

Buffered Training

Buffered Training

Training algorithm

generate new samples, train on them,
save samples
\downarrow
train on saved samples n times \downarrow repeat

Reduction in training statistics by

$$
R_{@}=n+1
$$

VegAs Initialization

VegAs Initialization

Toy Example: Drell-Yan + Z'

Toy Example: Drell-Yan + Z'

Learned distribution matches truth

Toy Example: Drell-Yan + Z'

Learned distribution matches truth

Toy Example: Drell-Yan + Z'

Learned distribution matches truth

Toy Example: Drell-Yan + Z'

Learned distribution matches truth

LHC Example: Vector Boson Scattering

LHC Example: Vector Boson Scattering

Unweighting efficiency improved up to factor ~9 compared to VEGAS

LHC Example: Vector Boson Scattering

Unweighting efficiency improved up to factor ~9 compared to VEGAS

Big improvement from Vegas initialization

LHC Example: Vector Boson Scattering

Significant improvement from trained channel weights

Unweighting efficiency improved up to factor ~9 compared to VEGAS

Big improvement from Vegas initialization

LHC Example: Vector Boson Scattering

Buffered training: small effect on performance, much faster training

Unweighting efficiency improved up to factor ~9 compared to VEGAS

Significant improvement from trained channel weights

Big improvement from VEGAS initialization

LHC Example: W + 2 jets

Process has small interference terms
\rightarrow no significant improvement from trained channel weights

Otherwise similar to results for VBS

Outlook

Upcoming paper

Detailed comparison between
MadNIS and standard MadGraph
\rightarrow more LHC processes
\rightarrow scaling with jet multiplicity
\rightarrow runtime comparison
\rightarrow test MadNIS features
Stay tuned!

Outlook

Upcoming paper

Detailed comparison between
MadNIS and standard MadGraph
\rightarrow more LHC processes
\rightarrow scaling with jet multiplicity
\rightarrow runtime comparison
\rightarrow test MadNIS features
Stay tuned!

Future plans

Make MadNIS part of future MadGraph releases

Appendix

MadNIS: Neural Importance Sampling

Phase space
$\Phi \subseteq \mathbb{R}^{N}$

Unit hypercube

$$
U=[0,1]^{N}
$$

Single channel i

MadNIS: Neural Importance Sampling

Phase space
$\Phi \subseteq \mathbb{R}^{N}$

Unit hypercube $U=[0,1]^{N}$

Combination of k channels

Neural Channel Weights

Neural Channel Weights

Residual Block

Add prior

$$
\alpha_{i}(x \mid \theta)=\log \beta_{i}(x)+\Delta_{i}(x \mid \theta)
$$

Normalization

$$
\alpha_{i}(x \mid \theta) \rightarrow \hat{\alpha}_{i}(x \mid \theta)=\frac{\beta_{i}(x) \exp \Delta_{i}(x \mid \theta)}{\sum_{j} \beta_{j}(x) \exp \Delta_{j}(x \mid \theta)}
$$

$$
\beta_{i}(x)=\frac{\left|M_{i}(x)\right|^{2}}{\sum_{j}\left|M_{j}(x)\right|^{2}}
$$

Prior Channel Weights

Neural Importance Sampling

Normalizing Flow

Unit hypercube

Unit hypercube

Phase space

SymFI Multi-Channel

