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Monte Carlo integration 
and sampling from 

differential cross section 

↓ 

accelerate with 
deep generative models

Exact sampling ensured 
by known likelihood 

↓ 

better model 
= 

faster sampling

Differential cross section 
known from QFT: 

 

Total cross section: 

dσ ∼ pdf(x) ⋅ |ℳ(x) |2 ⋅ dΦ

σ = ∫Φ
dσ
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Monte Carlo Integration
I = ∫ dx f(x)

I = ⟨ f(x)⟩x∼p(x) I = ⟨ f(x)
g(x) ⟩

x∼g(x)
I = ∑

i ⟨αi(x)
f(x)
gi(x) ⟩

x∼gi(x)

Flat sampling 
inefficient 

Importance sampling 
Find mapping close 

to integrand

Multi-channeling 
one mapping for 

each channel
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VEGAS algorithm

4

Factorize probability
p(x) = p(x1)⋯p(xn)

⊕ Computationally cheap 

⊖ High-dim and rich peaking functions 
→ slow convergence 

⊖ Peaks not aligned with grid axes 
→ phantom peaks

Fit bins with equal probability 
and varying width

[G. P. Lepage, 1978]



Normalizing Flows 6Conditional Invertible Neural Networks
• chain of learnable, invertible transformations with tractable Jacobian

[Ardizzone et al., 1907.02392]
• Train network by maximizing log-likelihood for training dataset

logp(zn) = logp(z1) + log det ∂z1(zn; c)
∂zn

p(z1) p(z2|c) p(z3|c) p(z4|c)

Simple latent
distribution
(Gaussian)

Data
distribution

Condition c

f1 f2 f3

training on samples
density estimation

sampling

Chain of invertible, learnable transformations with 
exact likelihood from change of variables formula

log p(zn |c) = log p(z1) + log det
∂z1(zn; c)

∂zn

5Flows for NIS: [Gao et al, 2001.05486] [Gao et al, 2001.10028] [Bothmann et al, 2001.05478]
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MadNIS: Neural Importance Sampling

I = ∑
i ⟨αi(x)

f(x)
gi(x) ⟩

x∼gi(x)

Use physics knowledge to construct channels and mappings

Normalizing Flow to 
refine channel mappings

Fully connected network 
to refine channel weights

Optimize simultaneously with integral variance as loss function

6



MadNIS: Overview
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Buffered Training
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Buffered samples

x, q(x | φ̂), f(x)
Weighted Loss

L( f(x), g(x |φ) |w(x |φ))

Density
w(x |φ) =

g(x |φ)
q(x | φ̂)

Buffered training

g(x |φ)

G(x |φ)

g(x |φ) φ→φ̂ q(x | φ̂)

Sample 
y

PS points
x

Integrand
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Density

LossG−1(y |φ)
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Online training



Buffered Training
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1 2 3 4 5 6
reduction in training statistics R@
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t@ = 40µs
tbuff = 30µs

fixed number of weight updates

t f = 1µs
t f = 10µs
t f = 100µs
t f = 1ms

Training algorithm 

generate new samples, train on them, 
save samples 

↓ 
train on saved samples  times 

↓ 
repeat

n

Reduction in training statistics by 

R@ = n + 1



VEGAS Initialization
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VEGAS Flow

Training Fast Slow

Correlations No Yes

Combine advantages: 

Pre-trained VEGAS grid as 
starting point for flow training



VEGAS Initialization
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y2

Concat

y1

RQ-Spline

z1

Split

z2

RQ-Spline Subnet

Subnet

Initialization

Bin reduction

VEGAS gridVEGAS Flow

Training Fast Slow

Correlations No Yes

Combine advantages: 

Pre-trained VEGAS grid as 
starting point for flow training



Toy Example: Drell-Yan + Z’

10�9

10�6

10�3

N
or

m
al

iz
ed

chan �
chan Z
chan Z0

Truth

0

1
↵

R@ = 1 R@ = 3 R@ = 5

200 400 600
Me+e� [GeV]

0.75

1.00

1.25

ra
tio

to
R @
=

1

12



Toy Example: Drell-Yan + Z’

10�9

10�6

10�3

N
or

m
al

iz
ed

chan �
chan Z
chan Z0

Truth

0

1
↵

R@ = 1 R@ = 3 R@ = 5

200 400 600
Me+e� [GeV]

0.75

1.00

1.25

ra
tio

to
R @
=

1

Learned distribution 
matches truth

12



Toy Example: Drell-Yan + Z’

10�9

10�6

10�3

N
or

m
al

iz
ed

chan �
chan Z
chan Z0

Truth

0

1
↵

R@ = 1 R@ = 3 R@ = 5

200 400 600
Me+e� [GeV]

0.75

1.00

1.25

ra
tio

to
R @
=

1

Learned distribution 
matches truth Peaks mapped out 

by different channels

12



Toy Example: Drell-Yan + Z’

10�9

10�6

10�3

N
or

m
al

iz
ed

chan �
chan Z
chan Z0

Truth

0

1
↵

R@ = 1 R@ = 3 R@ = 5

200 400 600
Me+e� [GeV]

0.75

1.00

1.25

ra
tio

to
R @
=

1

Learned distribution 
matches truth Peaks mapped out 

by different channels

Channel weights 
learned by network

12



Toy Example: Drell-Yan + Z’

10�9

10�6

10�3

N
or

m
al

iz
ed

chan �
chan Z
chan Z0

Truth

0

1
↵

R@ = 1 R@ = 3 R@ = 5

200 400 600
Me+e� [GeV]

0.75

1.00

1.25

ra
tio

to
R @
=

1

Learned distribution 
matches truth Peaks mapped out 
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times to make 
training faster
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LHC Example: W + 2 jets
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Outlook
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Upcoming paper

Detailed comparison between 
MadNIS and standard MadGraph 

→more LHC processes 

→ scaling with jet multiplicity 

→ runtime comparison 

→ test MadNIS features 

Stay tuned!
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Upcoming paper

Make MadNIS part of future 
MadGraph releases

Future plans

Detailed comparison between 
MadNIS and standard MadGraph 

→more LHC processes 

→ scaling with jet multiplicity 

→ runtime comparison 

→ test MadNIS features 

Stay tuned!
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MadNIS: Neural Importance Sampling
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MadNIS: Neural Importance Sampling
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Conditional SplittingLatent space z
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Neural Channel Weights
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Neural Channel Weights
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Channel WeightPhase space

x ∼ dΦ
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  αi(x |θ) = log βi(x) +Δi(x |θ)
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∑j exp Δj(x |θ)
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Neural Importance Sampling
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SYMFI Multi-Channel
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Analytic Channel 
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