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Monte Carlo integration

and sampling from


differential cross section


↓


accelerate with

deep generative models

Exact sampling ensured

by known likelihood


↓


better model

=


faster sampling

Differential cross section

known from QFT:





Total cross section:


dσ ∼ pdf(x) ⋅ |ℳ(x) |2 ⋅ dΦ

σ = ∫Φ
dσ



Monte Carlo Integration
I = ∫ dx f(x)
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Monte Carlo Integration
I = ∫ dx f(x)

I = ⟨ f(x)⟩x∼p(x) I = ⟨ f(x)
g(x) ⟩

x∼g(x)
I = ∑

i ⟨αi(x)
f(x)
gi(x) ⟩

x∼gi(x)

Flat sampling

inefficient


Importance sampling

Find mapping close


to integrand

Multi-channeling

one mapping for


each channel
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VEGAS algorithm
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VEGAS algorithm

4

Factorize probability
p(x) = p(x1)⋯p(xn)

⊕ Computationally cheap


⊖ High-dim and rich peaking functions 
→ slow convergence


⊖ Peaks not aligned with grid axes 
→ phantom peaks

Fit bins with equal probability

and varying width

[G. P. Lepage, 1978]



Normalizing Flows 6Conditional Invertible Neural Networks
• chain of learnable, invertible transformations with tractable Jacobian

[Ardizzone et al., 1907.02392]
• Train network by maximizing log-likelihood for training dataset

logp(zn) = logp(z1) + log det ∂z1(zn; c)
∂zn

p(z1) p(z2|c) p(z3|c) p(z4|c)

Simple latent
distribution
(Gaussian)

Data
distribution

Condition c

f1 f2 f3

training on samples
density estimation

sampling

Chain of invertible, learnable transformations with

exact likelihood from change of variables formula

log p(zn |c) = log p(z1) + log det
∂z1(zn; c)

∂zn

5Flows for NIS: [Gao et al, 2001.05486] [Gao et al, 2001.10028] [Bothmann et al, 2001.05478]
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MadNIS: Neural Importance Sampling

I = ∑
i ⟨αi(x)

f(x)
gi(x) ⟩

x∼gi(x)

Use physics knowledge to construct channels and mappings

Normalizing Flow to

refine channel mappings

Fully connected network

to refine channel weights

Optimize simultaneously with integral variance as loss function
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MadNIS: Overview
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Buffered Training
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Buffered Training
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Buffered samples

x, q(x | φ̂), f(x)
Weighted Loss

L( f(x), g(x |φ) |w(x |φ))

Density
w(x |φ) =

g(x |φ)
q(x | φ̂)

Buffered training

g(x |φ)

G(x |φ)
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Sample 
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Buffered Training
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reduction in training statistics R@
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Training algorithm


generate new samples, train on them,

save samples


↓

train on saved samples  times


↓

repeat

n

Reduction in training statistics by


R@ = n + 1



VEGAS Initialization
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VEGAS Flow

Training Fast Slow

Correlations No Yes

Combine advantages:


Pre-trained VEGAS grid as

starting point for flow training



VEGAS Initialization
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y2

Concat

y1

RQ-Spline

z1

Split

z2

RQ-Spline Subnet

Subnet

Initialization

Bin reduction

VEGAS gridVEGAS Flow

Training Fast Slow

Correlations No Yes

Combine advantages:


Pre-trained VEGAS grid as

starting point for flow training
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LHC Example: W + 2 jets
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Outlook
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Upcoming paper

Detailed comparison between

MadNIS and standard MadGraph


→more LHC processes


→ scaling with jet multiplicity


→ runtime comparison


→ test MadNIS features


Stay tuned!
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Upcoming paper

Make MadNIS part of future

MadGraph releases

Future plans

Detailed comparison between

MadNIS and standard MadGraph


→more LHC processes


→ scaling with jet multiplicity


→ runtime comparison


→ test MadNIS features


Stay tuned!
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MadNIS: Neural Importance Sampling

17Latent space z

Channel i

⟨αi(x)
f(x)
gi(x) ⟩

Analytic Channel 
mapping i

 Φ ⊆ ℝN
Phase space Learned channel 

weight αi(x)

Normalizing 
Flow i

 
U = [0,1]N

Unit hypercube

Single channel i



MadNIS: Neural Importance Sampling
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Neural Channel Weights
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Neural Channel Weights
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Neural Importance Sampling
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SYMFI Multi-Channel
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