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Introduction

How can we prevent MC event generation from becoming a bottleneck in future LHC runs?

scattering decay ISR/SFR ' detectors
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Introduction

How can we prevent MC event generation from becoming a bottleneck in future LHC runs?

scattering decay ISR/SFR shower fragmentation detectors
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Differential cross section Monte Carlo integration Exact sampling ensured
known from QFT: and sampling from by known likelihood
do ~ pdf(x) - | M(x)|* - dD differential cross section N
Total cross section: NS hetter model
o= [ do accelerate with =
@ deep generative models faster sampling



Monte Carlo Integration

[ = def(x)



Monte Carlo Integration

[ = def(x)

Flat sampling
Inefficient

I = <f(x)>x~p(x)




Monte Carlo Integration

[ = def(x)
v

Flat sampling Importance sampling
Inefficient Find mapping close
to integrand

(x)
I = (f (X)>x~p(X) = <{;())CC) > (x)
x~g(x




Monte Carlo Integration

Flat sampling
Inefficient

I = <f(x)>x~p(x)

[ = def(x)
v

Importance sampling
Find mapping close
to integrand

. <f(x) >
8N / oy

Multi-channeling
one mapping for
each channel

J(x)
J = |
Z <a,(x) ) >xNg(x)
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VEGAS algorithm

Factorize probability
p(x) = p(xp)---p(x,)

Fit bins with equal probability
and varying width




VEGAS algorithm

Factorize probability
p(x) = p(xp)---p(x,)

Fit bins with equal probability
and varying width

@ Computationally cheap

© High-dim and rich peaking functions
- slow convergence

© Peaks not aligned with grid axes
- phantom peaks




Normalizing Flows

Chain of invertible, learnable transformations with

exact likelihood from change of variables formula
071(2,5 €)

log p(z,|c) = logp(z;) + log det P
Z,

training on samples

Simple latent
distribution
(Gaussian)

density estimation
p(z1) p(za|c) p(zs]c) p(z4]c)

dist

Data

ribution

A

sampling



MadNIS: Neural Importance Sampling




MadNIS: Neural Importance Sampling

Use physics knowledge to construct channels and mappings



MadNIS: Neural Importance Sampling

v

Use physics knowledge to construct channels and mappings

Normalizing Flow to Fully connected network
refine channel mappings to refine channel weights



MadNIS: Neural Importance Sampling

v

Use physics knowledge to construct channels and mappings

Normalizing Flow to Fully connected network
refine channel mappings to refine channel weights

Optimize simultaneously with integral variance as loss function



MadNIS: Overview

Basic functionality Improved Multichanneling
Cl}lqglrj]rnaell Normalizing < —_— Overflow Ssa;cr?;)iﬁir‘fg/
Weights Flow Channels Training

MadGraph MadEvent
matrix channel
elements mappings

Symmetries
between
channels

Conditional
flows

Improved training

~ VEGAS Buffered Trainable
Initialization Training Rotations



MadNIS: Overview

Improved training

~ VEGAS Buffered
Initialization Training



Buffered Training

Online training

Sample PS points Loss
y X L(f(x), g(x| )
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Buffered Training

Online training

Sample PS points Loss
y X L(f(x), g(x| )
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Buffered samples Weighted Loss
x, ¢(x| ), f(x) L(f), g(x] 9) | wix| 9)) | &

Buffered training

Density & gxlp) :
w(x| @) = A -
. gx| @) qx|@) s



Buffered Training

Training algorithm
, g 1.0° fixed number of weight updates
generate new samples, train on them, 3=
save samples s 08
g
' \I/ ' S —— t,=1us
train on saved samples 7 times S F=1p
J 5 0.6- by = :_O,u,s
repeat %f’ — t; =100ps
= tf — 11I1S
5 0.4- )
%‘é Couee = 30 US
Reduction in training statistics by 0.21 . . . . -
1 2 3 4 S5 6

Re =n+1 reduction in training statistics R
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VEGAS Initialization

Combine advantages:

Pre-trained VEGAS grid as
starting point for flow training
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VEGAS Initialization
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l RQ-Spline :
nitialization |t .

Correlationsé

Combine advantages: S

Pre-trained VEGAS grid as S

starting point for flow training
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Toy Example: Drell-Yan + Z’

Normalized

O v 1.25_

| 100 fmmrr i

ratio t

& 0.75 -
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Toy Example: Drell-Yan + Z’

Learned distribution
matches truth

Normalized

O 1.25 1

| 100 fmmrr i

ratio t

& 0.75-
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Toy Example: Drell-Yan + Z’

m
Learned distribution S 1073 W chan Z
matches truth = _ chan Z' Pea}ks mapped out
E =_ by different channels
= 107048 L
Z
10~
1 -
S
O_
g— L2>y
Sy 1.00 s S
=R 0.75 -
200 400 600
Me+e— [GeV]
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Toy Example: Drell-Yan + Z’

m
Learned distribution S 1073 W chan Z
matches truth = _ chan Z' Pea}ks mapped out
= ¢ = T by different channels
5 107§ e
Z
1077
1 -
B °
Channel weights
0- learned by network
O v 1.25_
o I R NS () § e
2 o 1.00 R A
= 0.75-
200 400 600
Me+e— [GeV]
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Toy Example: Drell-Yan + Z’

B chany
B chan 7
C

Peaks mapped out
by different channels

Channel weights
learned by network

Learned distribution ©107° han Z
matches truth = ., & T nan 2
§ IS S R
Z
1077
1_
S To—
Use samples multiple  _ —s
times to make T [ e
s SV 100 e e TR e e
training faster S oS E
200 400 600
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LHC Example: Vector Boson Scattering

uc — WTWtds uc — WTW™ds
- 10 o

DO
o
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—o—
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relative std dev o /1
o
unweighting efficiency n [%]
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VEGAS Flow Flow VFlow VFlow VFlow VFlow Flow Flow VFlow VFlow VFlow VFlow
fixed o trained a fixed @ trained « trained « trained « fixed « trained « fixed a trained @ trained o trained «
Ra =29 Ra=5.0 Ra =29 Ra=25.0
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LHC Example: Vector Boson Scattering

relative std dev o /1

uc — WTWtds
- 10
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VEGAS TFlow Flow VFlow VFlow VFlow VFlow
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LHC Example: Vector Boson Scattering

relative std dev o /1

uc — WTWtds
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VEGAS TFlow Flow VFlow VFlow VFlow VFlow
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Unweighting efficiency improved
up to factor ~9 compared to VEGAS
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Big improvement from
VEGAS Initialization
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LHC Example: Vector Boson Scattering

Significant improvement
from trained channel weights

uc — WTWtds uc — WTW™ds
- 10 o

o/l

DO

o
+
—o—

oof b
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relative std dev o /1
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unweighting efficiency n [%)]
n %]

T 1t ¢
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Unweighting efficiency improved Big improvement from

up to factor ~9 compared to VEGAS VEGAS Initialization
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LHC Example: Vector Boson Scattering

Buffered training: small effect on Significant improvement
performance, much faster training from trained channel weights
uc — WTWds uc — WHTWds
- 10
X
12 - + + + "3 = =
S 2 © + ¢
> = 0.7 1 &
3 6 ‘ ¢
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\ Re = 2.9 Ra = 5.0 Re =29 Ra=50
Unweighting efficiency improved Big improvement from
up to factor ~9 compared to VEGAS VEGAS Initialization
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LHC Example: W + 2 jets

Process has small interference terms
- no significant improvement from trained channel weights

g9 — Wdu gg — WTdu
L 0.45 +

14 7] ®
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Otherwise similar to results for VBS
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Outlook

Upcoming paper
Detailed comparison between
MadNIS and standard MadGraph
- more LHC processes
- scaling with jet multiplicity
- runtime comparison

- test MadNIS features

Stay tuned!
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Outlook

Upcoming paper Future plans
Detailed comparison between Make MadNIS part of future
MadNIS and standard MadGraph MadGraph releases
- more LHC processes
- scaling with jet multiplicity
- runtime comparison

- test MadNIS features

Stay tuned!
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MadNIS: Neural Importance Sampling

Phase space Learned channel
d Cc RN weight ar(x)
Single channel ;
Normalizing
Unit hypercube
U=1[0,11"

Latent space 7
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MadNIS: Neural Importance Sampling

Learned channel
weights o (x)

Phase space
® C RY

Normalizing Normalizing Normalizing Combination of
Flow 1 Flow 2 Flow k k channels

Unit hypercube
U =1[0,11"

Latent space 7 @
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Phase space

Neural Channel Weights
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Neural Channel Weights

s Residual Block D
. )
Add prior x Channel Weight
a(x|0) =log /') +A (x| ) = g A
- — © |—>
Normalization S - ai(xlé’) y
O
(x10) = a,x]0) oxp 21O L
a(x]|0) = a.(x|0) =
z] CXp A](.x ‘ 9) ________ "
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Neural Importance Sampling

Unit hypercube
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SYMFI Multi-Channel

-

Analytic Channel a (x) J(x) Learned channel
Mapping i T gi(x) weight ayi(x)
Random number Channel permutation
I’l I/i(l"i, Sl) c {l, kil, ...,kil}

Symmetry factor
S; 11« {kil, ...,kl-l}

Channel :
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