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Outline

Introduction

• Autoencoders for anomaly detection

• Machine learning at L1

Decision tree autoencoder

• Novel training method

Firmware design

• Novel latent-spaceless design for FPGA

Physics & FPGA results

• Exotic decay of Higgs to pseudoscalars to 2e 2μ

• “LHC anomaly detection” dataset

How to save 

BSM at L1 

without 

models
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Can’t analyze data that’s not saved

• L1 triggers at ATLAS & CMS use custom 

electronics such as FPGAs to discard 99.8%

• Implementing anomaly detection at the L1 is 

challenging and possible (this talk)
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Anomaly detection in HEP

Source: http://cern.ch/twiki/pub/Atlas/TDAQSpeakersCommitteeCommonReferences/tdaqFullNew2017.pdf

Model-agnostic detection of BSM signals

• Many anomaly detection methods have been devised and 

tested on a variety of different HEP problems [https://iml-

wg.github.io/HEPML-LivingReview]

• Anomaly detection in ATLAS analysis
[ATLAS-CONF-2022-045]

http://cern.ch/twiki/pub/Atlas/TDAQSpeakersCommitteeCommonReferences/tdaqFullNew2017.pdf
https://iml-wg.github.io/HEPML-LivingReview
https://iml-wg.github.io/HEPML-LivingReview
https://cds.cern.ch/record/2816323
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Autoencoder intro

One 20-bit no.784 8-bit no. 784 8-bit no.

Input Output looks good!

Real 

example

What is an autoencoder (AE)

• Autoencoders can be used for data compression-decompression

• Typical methods use neural networks to encode-then-decode

• We use decision trees (see below)

Details

• MNIST 282 8-bit input/output, 1 tree depth 20, trained on 0,1,2,3,4

• Input-output distance is relatively small = good compression 
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AE for anomaly detection

One 20-bit no.784 8-bit no. 784 8-bit no.

Details

• MNIST 282 8-bit input/output, 1 tree depth 20, trained on 0,1,2,3,4 

• Input-output distance is relatively large = anomaly

Input Output looks bad!

Real 

example

AE can be used for anomaly detection

• Train the autoencoder with a sample S

• If it encounters input similar to S, then output is good (prev. slide)

• If it encounters input different than S, then output garbled (below)
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Decision tree autoencoders

X

Y

Training philosophy (novel method described in paper)

• Place small “bins” around locations of high event density

• Example

• 2d toy dataset, say x = pT and y = eta for some SM sample
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Decision tree autoencoders

X

Y

Training philosophy (novel method described in paper)

• Place small “bins” around locations of high event density

• Example

• 2d toy dataset, say x = pT and y = eta for some SM sample
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Decision tree autoencoders

X

Y

Latent space is bin number

• Encoding: Event → which bin it’s in

Decode by returning a “reconstruction point”

• Decoding: Bin → median of the training data in bin



Stephen Roche

12

How does this detect anomalies?

• Define: Distance between input – output = anomaly score

Decision tree autoencoders

X

Y
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How does this detect anomalies?

• Define: Distance between input – output = anomaly score

Decision tree autoencoders

X

Y

• Non-anomaly

• Input is similar to training data

• Will likely land in a small bin → close 

to reconstruction point
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How does this detect anomalies?

• Define: Distance between input – output = anomaly score

Decision tree autoencoders

X

Y

• Non-anomaly

• Input is similar to training data

• Will likely land in a small bin → close 

to the reconstruction point

• Anomaly

• Input is not similar to training data

• Will likely land in a large bin→ far 

from the reconstruction point
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Outline

Introduction

• Autoencoders for anomaly detection

• Machine learning at L1

Decision tree autoencoder

• Novel training method

Firmware design

• Novel latent-spaceless design for FPGA

Physics & FPGA results

• Exotic decay of Higgs to pseudoscalars to 2e 2μ

• “LHC anomaly detection” dataset
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FWXMACHINA

Details

• Parallel computing

• TREE ENGINES evaluated in parallel

• All combinatoric logic, so no 

clocking between steps = fast

• Mostly comparisons = fast

• No multiplication = fast

• Technical info in backup & see 
[2304.03836]

Logic flow

• Block diagram shows left-to-right 

logic flow (right)

• Encoding is decoding

• We bypass the latent space!

https://arxiv.org/abs/2304.03836
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SM 2e 2μ vs. ?

Veto events with lepton pT > 23 GeV 

• Consider only events that won’t be already captured by L1 trigger

Proof of concept problem

• Background: we generate all SM with 2e 2μ (predominantly ZZ*)

• Signal: ggF H→ a1 a2 → e+ e- μ+ μ- (different mH & ma)
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SM 2e 2μ vs. ?

Proof of concept problem

• Design

• 40 decision trees with maximum depth of 5

• 3 variables: mee, mμμ, m4l

• Physics results (see figure)

• Great separation for H125

• May need a “window selection” for H70

• FPGA results (see table)

• Latency within 25 ns = 1 BC

• Percent-level (or smaller) resource usage

• No multiplications!

Parameter Value

Clock speed 320 MHz

Latency 8 ticks (25 ns)

Interval 1 tick (3.125 ns)

FF 10k (0.4 %)

LUT 31k (2.6%)

DSP 3 (0.04%)

BRAM 0
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SM 2e 2μ vs. ?

Can we train the AE with real data?

• But real data would contain the signal you’re looking for…

• Study the results for different levels of signal contamination in training

Can we train the AE with real data?

• Looks reasonable for percent-level contamination
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Cross-check with public data

We try the “LHC anomaly 

detection dataset”
[Sci Data 9, 118]

• Background

• W → l v, Z → l l, multijet, ttbar

• Signal

• 4 BSM scenarios

• Input variables

• 54 variables

• pT, η, φ of the 4 leading μ, 4 leading 

e, 10 leading jets, MET

• See distributions on the right

• Sample selection

• Require ≥1 lepton w/ pT > 23 GeV

https://doi.org/10.1038/s41597-022-01187-8
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Cross-check with public data

It works

• Physics (plots)

• FPGA (table)

Comparison to prev. results

• Hls4ml-based neural network AE
[Nature Mach. Intell. 4 (2022) 154–161]

• Physics: similar AUC values

• FPGA (range since 4 designs)
• Latency: 80 – 1480 ns

• FF: 0.5 – 5%

• LUT: 3 – 47%

• DSP: 1 – 8%

• BRAM: 0.6 – 6%

Parameter Value

Clock speed 200 MHz

Latency 6 ticks (30 ns)

Interval 1 tick (5 ns)

FF 15k (0.6%)

LUT 109k (9.2%)

DSP 56 (0.8%)

BRAM 0

https://doi.org/10.1038/s42256-022-00441-3
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Conclusions

Fast autoencoder for FPGA

• Decision trees as anomaly detector

• Novel FPGA design. Without latent space!

• Novel training method. It’s interpretable!

• Performance

• Good physics separation, FPGA results

• Resistant to percent-level signal contamination

Questions?

• Preprint [2304.03836]

• More info at http://fwx.pitt.edu/

• Emails stephen.roche@health.slu.edu, 

bcarlson@westmont.edu, tmhong@pitt.edu

• Testbench at http://d-scholarship.pitt.edu/44431/

https://arxiv.org/abs/2304.03836
http://fwx.pitt.edu/
mailto:stephen.roche@health.slu.edu
mailto:bcarlson@westmont.edu
mailto:tmhong@pitt.edu
http://d-scholarship.pitt.edu/44431/
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Goal: use decision trees as autoencoders in order to 

use the existing fwX framework to evaluate them on 

FPGAs

• Few decision-tree based anomaly detectors exist [1709.09018], 

[2301.00880] and are not designed for particle physics 

applications or FPGA optimization

Solution: develop our own training algorithm for training decision tree 

autoencoders

• Training done entirely on background

Decision tree autoencoders

https://arxiv.org/abs/1709.09018
https://arxiv.org/abs/2301.00880
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Consider toy dataset

Decision tree autoencoders

Train on background Find reconstruction points

Evaluate on background 

& anomaly
Examine anomaly scores
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There are some advantages to using decision trees for anomaly 

detection

• Interpretability: it’s easier to understand why a given event was 

classified as anomalous

• Physics performance: works on MNIST, toy datasets, and the 2 

physics datasets in the coming slides 

• Can be readily implemented on FPGA with the fwX framework: 

next slides

Decision tree autoencoders
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Deploying AE at the L1 trigger 

is challenging

• Latency requirements: O(0.1 – 1)μs 

since 25ns bunch crossing rate

• Use custom electronics such as field 

programmable gate arrays (FPGA) 

with optimized algorithms for 

parallelization

Machine learning at L1
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FWXMACHINA is a Python package

• Developed by us

• Takes decision trees trained in software to create FPGA design

• For Classification, JINST 16 (2021) P08016

• For Regression, JINST 17 (2022) P09039

• Today’s AE in [2304.03836] (2023)

• Our approach

• Optimizations made to allow for parallelization, conversion of floating-point 

values to n-bit integers, and pruning

• Automatic test-point validation & testbench generation

Literature

• HLS4ML has AE built on

• neural network, Nature Mach. Intell. 4 (2022) 154–161

FWXMACHINA

https://doi.org/10.1088/1748-0221/16/08/p08016
https://iopscience.iop.org/article/10.1088/1748-0221/17/09/P09039
https://arxiv.org/abs/2304.03836
https://fastmachinelearning.org/
https://doi.org/10.1038/s42256-022-00486-4
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Trained models implemented on vu9p FPGA

• Very low latency and interval within constraints of L1 trigger systems

• Relatively little resource usage

Firmware performance

H→2e2mu LHC anomaly detection

Number of input variables 3 56

Number of trees 40 30

Max depth 5 4

Clock speed 320 MHz 200 MHz

Latency 8 ticks (25 ns) 6 ticks (30 ns)

Interval 1 tick (3.125 ns) 1 tick (5 ns)

FF 10k (0.4 %) 15k (0.6%)

LUT 31k (2.6%) 109k (9.2%)

DSP 3 (0.04%) 56 (0.8%)

BRAM 0 0
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