Anomaly detection with decision tree autoencoder on FPGA for L1 trigger system at LHC

Stephen Roche (SLU)*
On behalf of my co-authors (Pitt, Westmont)
of 2304.03836 [hep-ex]

Pheno 2023 May 9, 2023

https://indico.cern.ch/event/1218225/

Outline

Introduction

- Autoencoders for anomaly detection
- Machine learning at L1

Decision tree autoencoder

Novel training method

Firmware design

Novel latent-spaceless design for FPGA

Physics & FPGA results

- Exotic decay of Higgs to pseudoscalars to 2e 2µ
- "LHC anomaly detection" dataset

How to save BSM at L1 without models

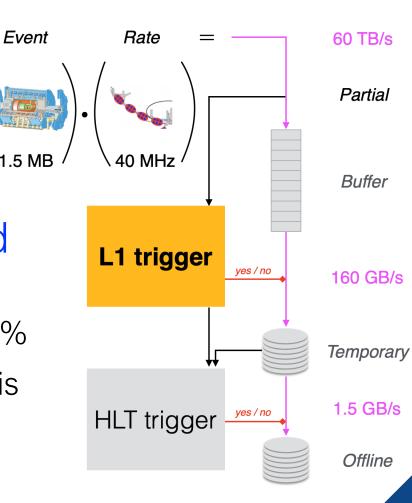
Anomaly detection in HEP

Model-agnostic detection of BSM signals

- Many anomaly detection methods have been devised and tested on a variety of different HEP problems [https://imlwg.github.io/HEPML-LivingReview]
- Anomaly detection in ATLAS analysis [ATLAS-CONF-2022-045]

Can't analyze data that's not saved

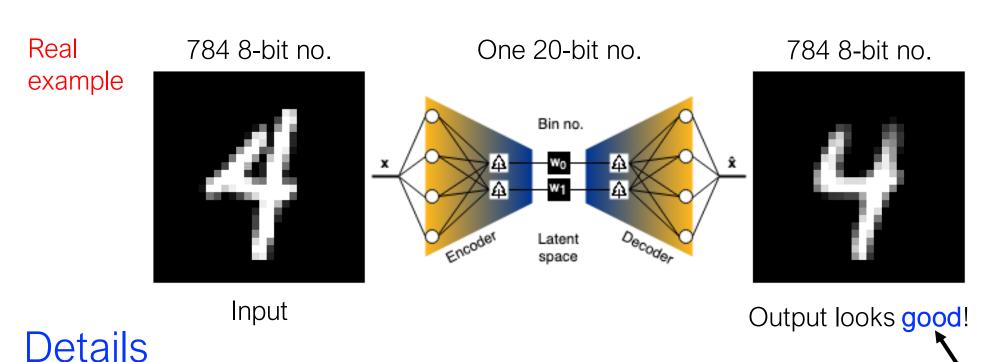
- L1 triggers at ATLAS & CMS use custom electronics such as FPGAs to discard 99.8%
- Implementing anomaly detection at the L1 is challenging and possible (this talk)



Autoencoder intro

What is an autoencoder (AE)

- Autoencoders can be used for data compression-decompression
 - Typical methods use neural networks to encode-then-decode
- We use decision trees (see below)

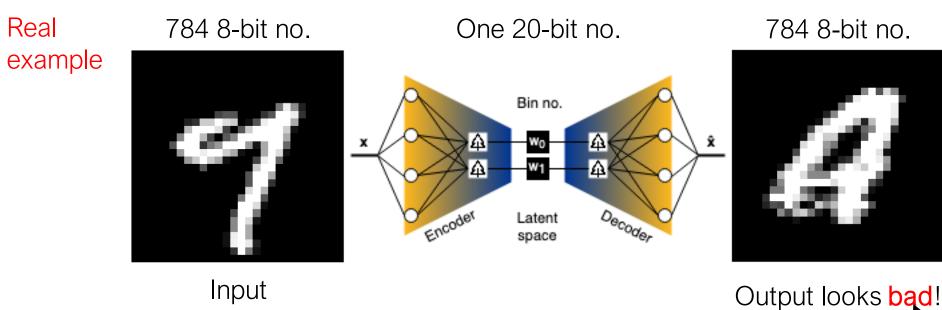


- MNIST 28² 8-bit input/output, 1 tree depth 20, trained on 0,1,2,3 (4)
- Input-output distance is relatively small = good compression

AE for anomaly detection

AE can be used for anomaly detection

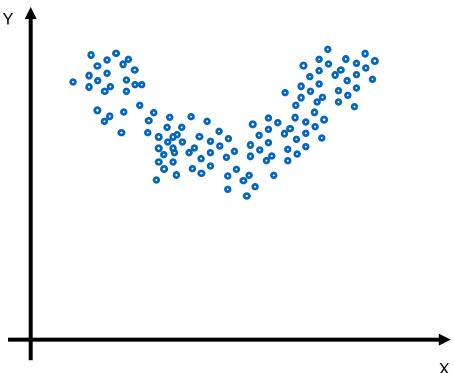
- Train the autoencoder with a sample S
 - If it encounters input similar to S, then output is good (prev. slide)
 - If it encounters input different than S, then output garbled (below)



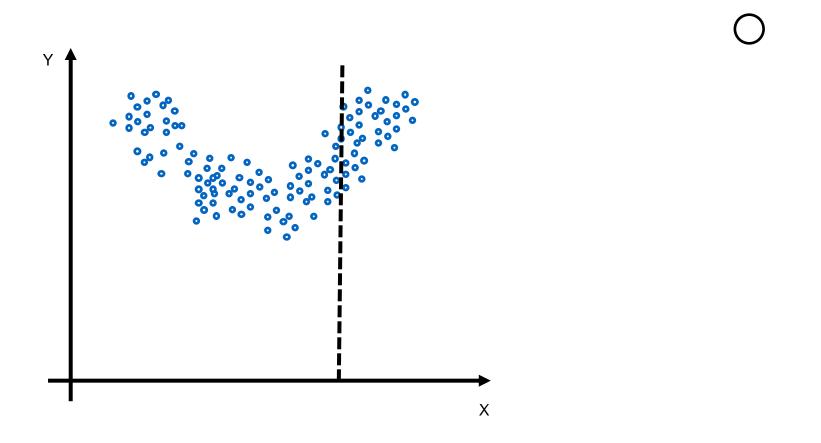
Details

- MNIST 28² 8-bit input/output, 1 tree depth 20, trained on 0,1,2,3,4
- Input-output distance is relatively large = anomaly

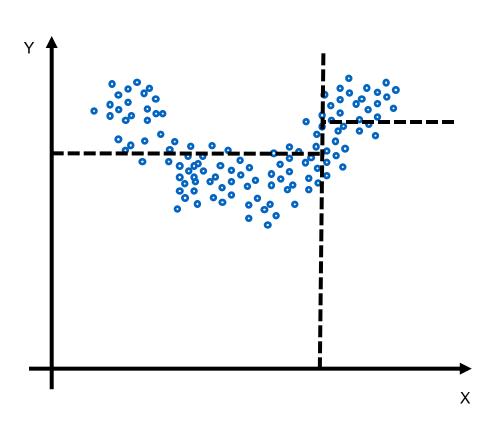
- Place small "bins" around locations of high event density
- Example
 - 2d toy dataset, say $x = p_T$ and y = eta for some SM sample

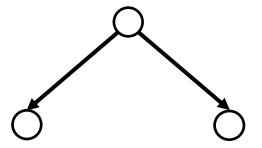


- Place small "bins" around locations of high event density
- Example
 - 2d toy dataset, say $x = p_T$ and y = eta for some SM sample

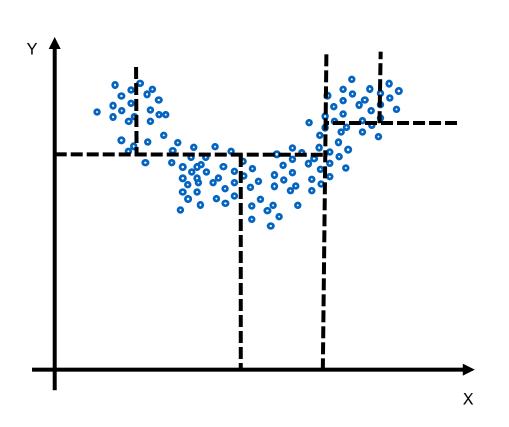


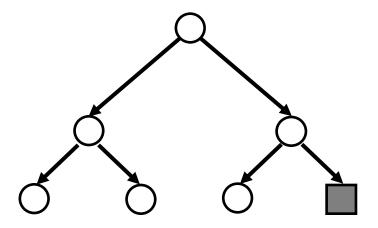
- Place small "bins" around locations of high event density
- Example
 - 2d toy dataset, say $x = p_T$ and y = eta for some SM sample



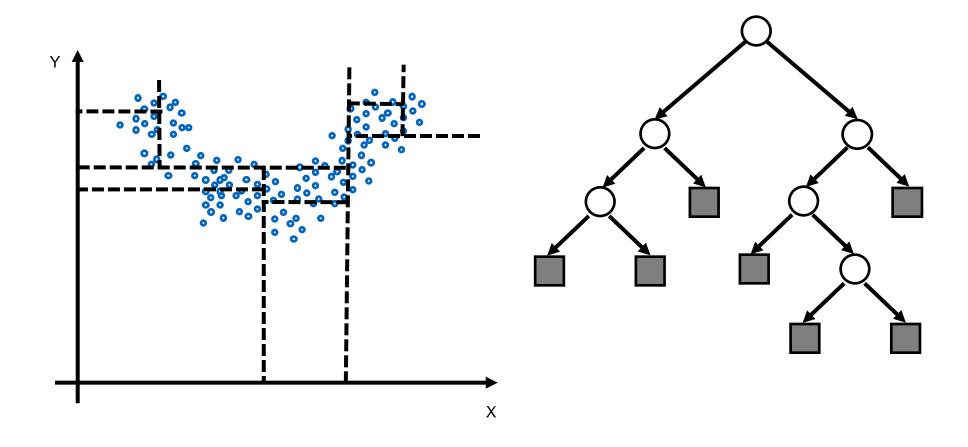


- Place small "bins" around locations of high event density
- Example
 - 2d toy dataset, say $x = p_T$ and y = eta for some SM sample





- Place small "bins" around locations of high event density
- Example
 - 2d toy dataset, say $x = p_T$ and y = eta for some SM sample

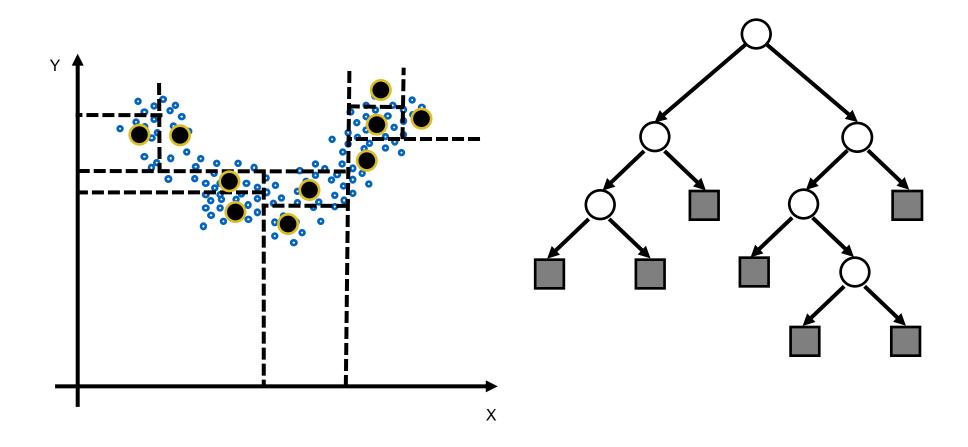


Latent space is bin number

Encoding: Event → which bin it's in

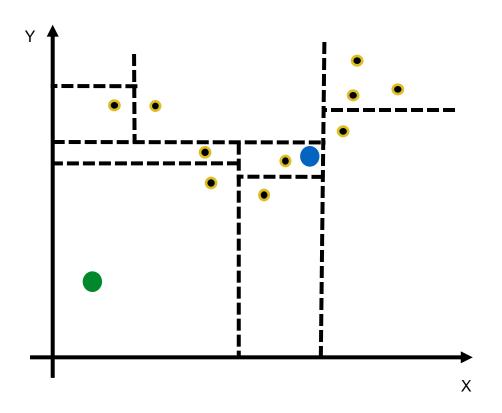
Decode by returning a "reconstruction point"

Decoding: Bin → median of the training data in bin



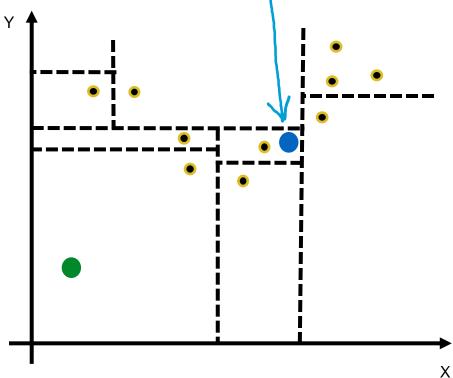
How does this detect anomalies?

• Define: Distance between input – output = anomaly score



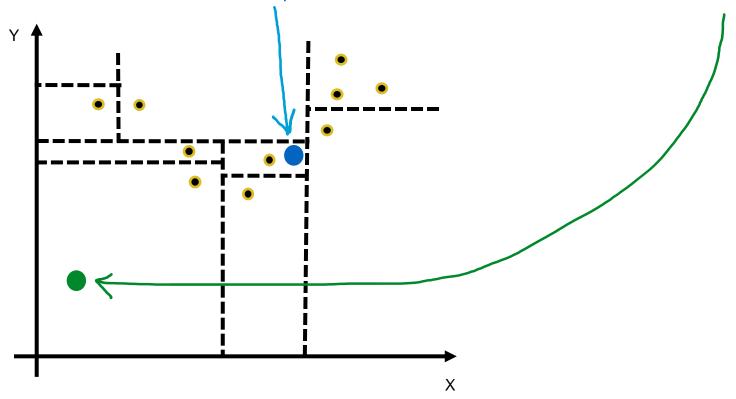
How does this detect anomalies?

- Define: Distance between input output = anomaly score
- Non-anomaly
 - Input is similar to training data
 - Will likely land in a small bin → close to reconstruction point



How does this detect anomalies?

- Define: Distance between input output = anomaly score
- Non-anomaly
 - Input is similar to training data
 - Will likely land in a small bin → close to the reconstruction point
- Anomaly
 - Input is not similar to training data
 - Will likely land in a large bin → far from the reconstruction point



Outline

Introduction

- Autoencoders for anomaly detection
- Machine learning at L1

Decision tree autoencoder

Novel training method

Firmware design

Novel latent-spaceless design for FPGA

Physics & FPGA results

- Exotic decay of Higgs to pseudoscalars to 2e 2µ
- "LHC anomaly detection" dataset

FWXMACHINA

Logic flow

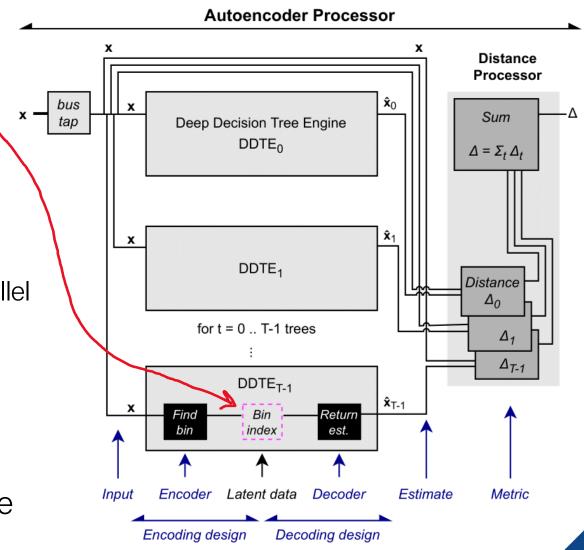
 Block diagram shows left-to-right logic flow (right)

Encoding is decoding

We bypass the latent space!

Details

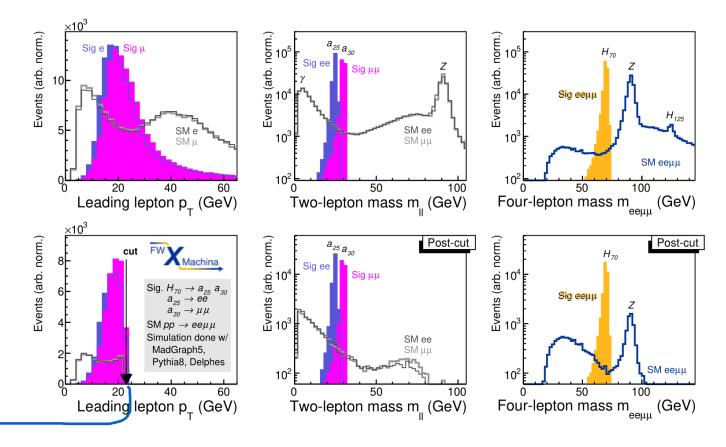
- Parallel computing
 - TREE ENGINES evaluated in parallel
 - All combinatoric logic, so no clocking between steps = fast
 - Mostly comparisons = fast
 - No multiplication = fast
- Technical info in backup & see [2304.03836]



SM 2e 2μ vs. ?

Proof of concept problem

- Background: we generate all SM with 2e 2µ (predominantly ZZ*)
- Signal: ggF H \rightarrow a₁ a₂ \rightarrow e⁺ e⁻ μ ⁺ μ ⁻ (different m_H & m_a)



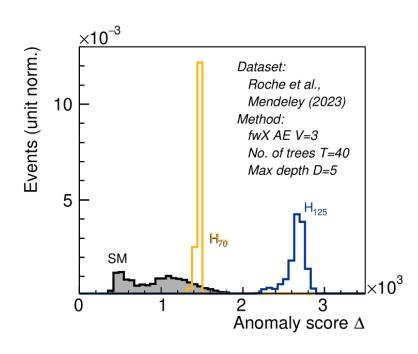
Veto events with lepton p_T > 23 GeV

Consider only events that won't be already captured by L1 trigger

SM 2e 2μ vs. ?

Proof of concept problem

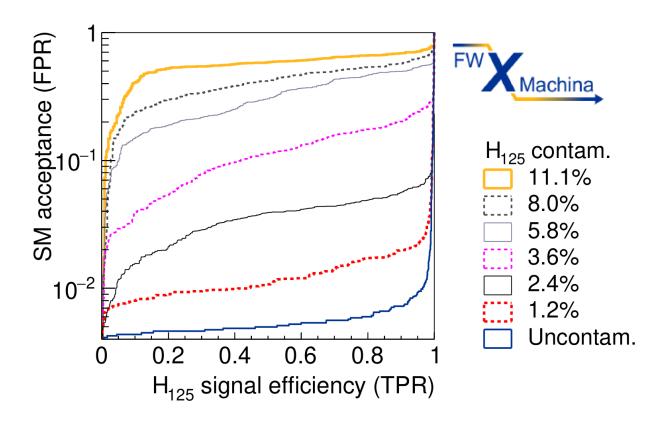
- Design
 - 40 decision trees with maximum depth of 5
 - 3 variables: m_{ee}, m_{μμ}, m_{4l}
- Physics results (see figure)
 - Great separation for H₁₂₅
 - May need a "window selection" for H₇₀
- FPGA results (see table)
 - Latency within 25 ns = 1 BC
 - Percent-level (or smaller) resource usage
 - No multiplications!



Parameter	Value
Clock speed	320 MHz
Latency	8 ticks (25 ns)
Interval	1 tick (3.125 ns)
FF	10k (0.4 %)
LUT	31k (2.6%)
DSP	3 (0.04%)
BRAM	0

Can we train the AE with real data?

- But real data would contain the signal you're looking for...
 - Study the results for different levels of signal contamination in training



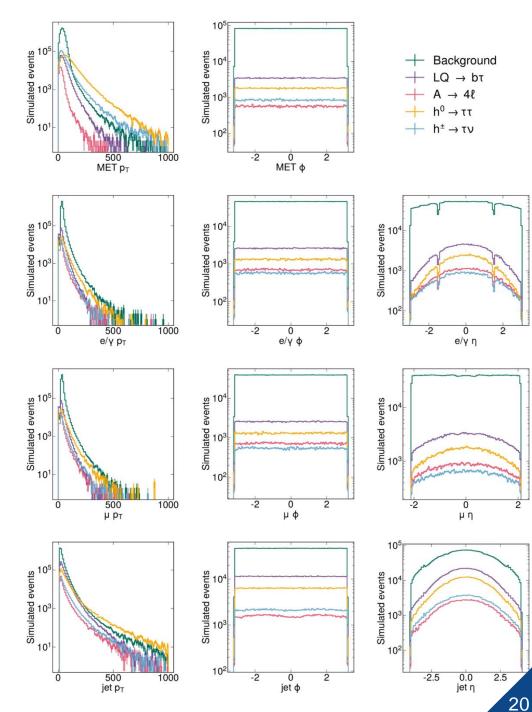
Can we train the AE with real data?

Looks reasonable for percent-level contamination

Cross-check with public data

We try the "LHC anomaly detection dataset" [Sci Data 9, 118]

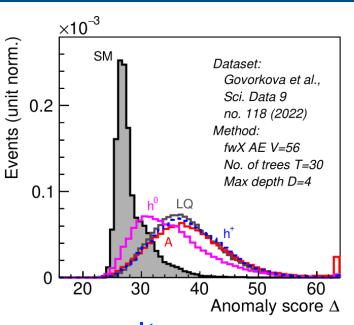
- Background
 - W \rightarrow I v, Z \rightarrow I I, multijet, ttbar
- Signal
 - 4 BSM scenarios
- Input variables
 - 54 variables
 - p_T , η , ϕ of the 4 leading μ , 4 leading e, 10 leading jets, MET
 - See distributions on the right
- Sample selection
 - Require ≥1 lepton w/ p_T > 23 GeV

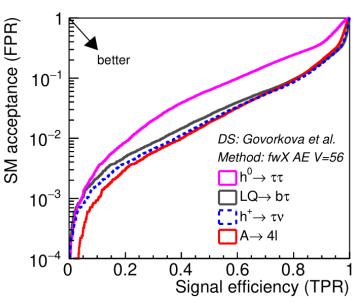


Cross-check with public data

It works

- Physics (plots)
- FPGA (table)





Comparison to prev. results

- HIs4mI-based neural network AE
 [Nature Mach. Intell. 4 (2022) 154–161]
- Physics: similar AUC values
- FPGA (range since 4 designs)
 - Latency: 80 1480 ns 矣
 - FF: 0.5 5%
 - LUT: 3 47%
 - DSP: 1 8%
 - BRAM: 0.6 6%

	Parameter	Value
	Clock speed	200 MHz
	Latency	6 ticks (30 ns)
	Interval	1 tick (5 ns)
1	FF	15k (0.6%)
	LUT	109k (9.2%)
	DSP	56 (0.8%)
\	BRAM	0

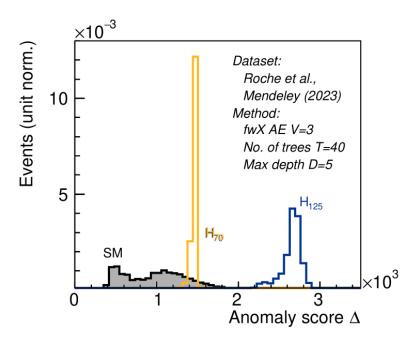
Conclusions

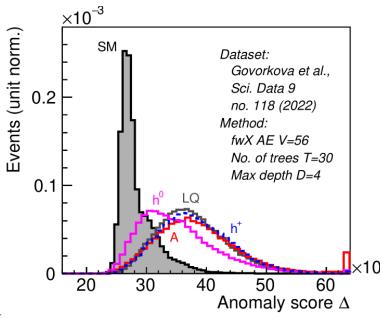
Fast autoencoder for FPGA

- Decision trees as anomaly detector
 - Novel FPGA design. Without latent space!
 - Novel training method. It's interpretable!
- Performance
 - Good physics separation, FPGA results
 - Resistant to percent-level signal contamination

Questions?

- Preprint [2304.03836]
- More info at http://fwx.pitt.edu/
 - Emails <u>stephen.roche@health.slu.edu</u>, <u>bcarlson@westmont.edu</u>, <u>tmhong@pitt.edu</u>
 - Testbench at http://d-scholarship.pitt.edu/44431/





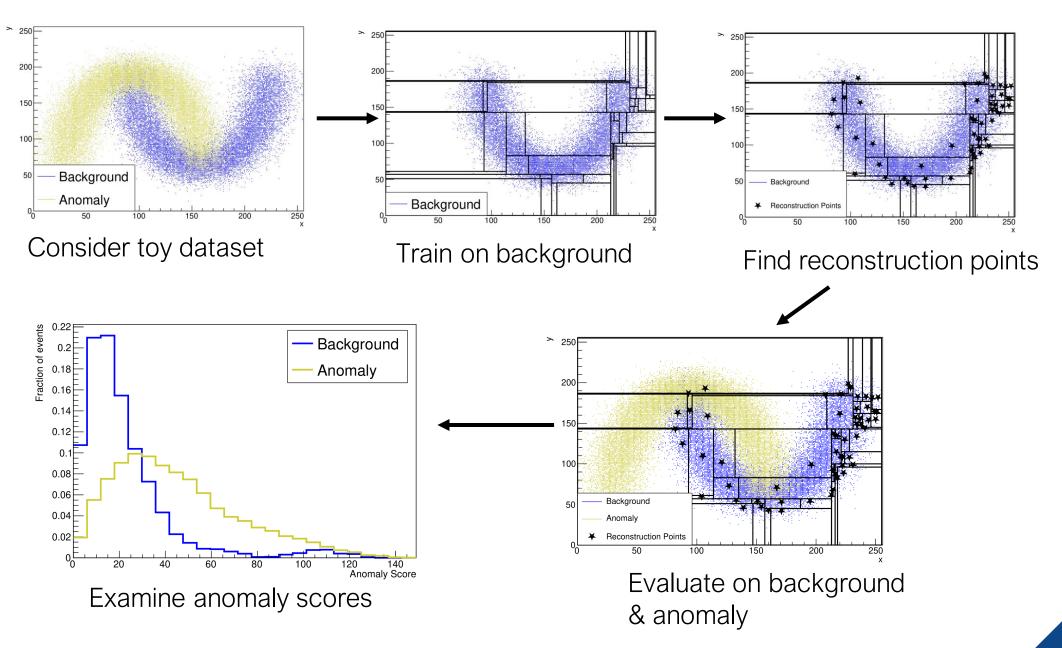
Backup slides

Goal: use decision trees as autoencoders in order to use the existing fwX framework to evaluate them on FPGAs

• Few decision-tree based anomaly detectors exist [1709.09018], [2301.00880] and are not designed for particle physics applications or FPGA optimization

Solution: develop our own training algorithm for training decision tree autoencoders

Training done entirely on background



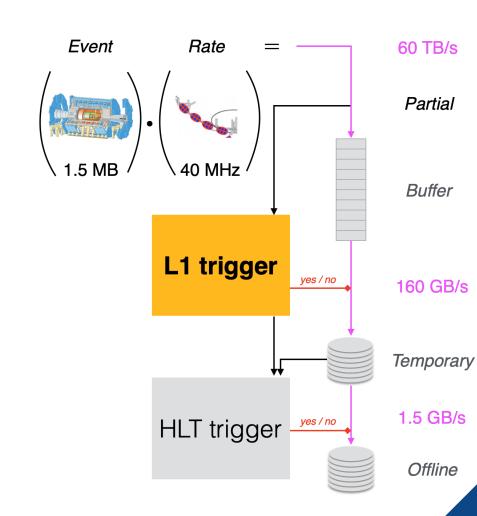
There are some advantages to using decision trees for anomaly detection

- Interpretability: it's easier to understand why a given event was classified as anomalous
- Physics performance: works on MNIST, toy datasets, and the 2 physics datasets in the coming slides
- Can be readily implemented on FPGA with the fwX framework: next slides

Machine learning at L1

Deploying AE at the L1 trigger is challenging

- Latency requirements: O(0.1 1)µs since 25ns bunch crossing rate
- Use custom electronics such as field programmable gate arrays (FPGA) with optimized algorithms for parallelization



FWXMACHINA

FWXMACHINA is a Python package

- Developed by us
- Takes decision trees trained in software to create FPGA design
 - For Classification, JINST 16 (2021) P08016
 - For Regression, <u>JINST 17 (2022) P09039</u>
 - Today's AE in [<u>2304.03836</u>] (2023)
- Our approach
 - Optimizations made to allow for parallelization, conversion of floating-point values to n-bit integers, and pruning
 - Automatic test-point validation & testbench generation

Literature

- HLS4ML has AE built on
 - neural network, <u>Nature Mach. Intell. 4 (2022) 154–161</u>

Firmware performance

Trained models implemented on vu9p FPGA

- Very low latency and interval within constraints of L1 trigger systems
- Relatively little resource usage

	H→2e2mu	LHC anomaly detection
Number of input variables	3	56
Number of trees	40	30
Max depth	5	4
Clock speed	320 MHz	200 MHz
Latency	8 ticks (25 ns)	6 ticks (30 ns)
Interval	1 tick (3.125 ns)	1 tick (5 ns)
FF	10k (0.4 %)	15k (0.6%)
LUT	31k (2.6%)	109k (9.2%)
DSP	3 (0.04%)	56 (0.8%)
BRAM	0	0