Monte Carlo Variance Reduction One Control Variate at a Time

Jacob Scott
In collaboration with
KC Kong, Konstantin Matchev, Stephen Mrenna, Prasanth Shyamsundar

Pheno, May 2023

Motivation

The Why

- Comparing theory and experiment requires integration.
- Most modern simulation tools use MC/vegas.
- Good to have better accuracy with less resources.

Motivation

The Why

- Comparing theory and experiment requires integration.
- Most modern simulation tools use MC/vegas.
- Good to have better accuracy with less resources.

The What

A look at Importance sampling applied by vegas and Control Variates applied on top by control-vegas.

Monte Carlo Integration

Expectation Value

$$
\begin{aligned}
E_{p}[f] & =\int_{\text {range of } p} \mathrm{~d} x f(x) p(x) \\
& \approx \frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right)
\end{aligned}
$$

where $x_{i} \sim p(x)$

Integral

$$
\begin{aligned}
I & =\int_{a}^{b} \mathrm{~d} x f(x) \\
& =(b-a) \int_{a}^{b} \mathrm{~d} x \frac{f(x)}{b-a} \\
& =(b-a) E_{U[a, b]}[f] \\
& \approx \frac{b-a}{N} \sum_{i=1}^{N} f\left(x_{i}\right)
\end{aligned}
$$

where $x_{i} \sim U[a, b]$.

Monte Carlo Integration

Expectation Value

$$
\begin{aligned}
E_{p}[f] & =\int_{\text {range of } p} \mathrm{~d} x f(x) p(x) \\
& \approx \frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right)
\end{aligned}
$$

where $x_{i} \sim p(x)$

Integral

$$
\begin{aligned}
I & =\int_{a}^{b} \mathrm{~d} x f(x) \\
& =(b-a) \int_{a}^{b} \mathrm{~d} x \frac{f(x)}{b-a} \\
& =(b-a) E_{U[a, b]}[f] \\
& \approx \frac{b-a}{N} \sum_{i=1}^{N} f\left(x_{i}\right)
\end{aligned}
$$

where $x_{i} \sim U[a, b]$.

Monte Carlo Integration

- Very simple
- Scales well with dimensionality
- Will converge
- But it converges slowly
- Even worse if function is highly peaked

Figure 1: E.g. A Breit-Wigner distribution

Importance Sampling

$$
\begin{gathered}
I=\int_{a}^{b} \mathrm{~d} x f(x)=\int_{a}^{b} \mathrm{~d} x \frac{f(x)}{p(x)} p(x)=E_{p}\left[\frac{f}{p}\right] \approx \frac{1}{N} \sum_{i=0}^{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)} \\
\text { where } \quad x_{i} \sim p(x) \\
\text { and } \quad \int_{a}^{b} \mathrm{~d} x p(x)=1
\end{gathered}
$$

Importance Sampling

$$
\begin{gathered}
I=\int_{a}^{b} \mathrm{~d} x f(x)=\int_{a}^{b} \mathrm{~d} x \frac{f(x)}{p(x)} p(x)=E_{p}\left[\frac{f}{p}\right] \approx \frac{1}{N} \sum_{i=0}^{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)} \\
\text { where } \quad x_{i} \sim p(x) \\
\quad \text { and } \quad \int_{a}^{b} \mathrm{~d} x p(x)=1
\end{gathered}
$$

- If $p(x) \propto f(x)$, then we find exact value of integral.
- So we want a p that mimics f, e.g. p peaks where f does.

Control Variates

$$
\begin{aligned}
& I=\int_{a}^{b} \mathrm{~d} x f(x)=\int_{a}^{b} \mathrm{~d} x f^{*}(x) \approx \frac{b-a}{N} \sum_{i=1}^{N} f^{*}\left(x_{i}\right) \\
& \quad \text { where } \quad f^{*}(x)=f(x)+c\left(g(x)-E_{U[a, b]}[g]\right) \\
& \text { and } \quad x_{i} \sim U[a, b]
\end{aligned}
$$

Control Variates

$$
\begin{aligned}
I=\int_{a}^{b} \mathrm{~d} x f(x) & =\int_{a}^{b} \mathrm{~d} x f^{*}(x) \approx \frac{b-a}{N} \sum_{i=1}^{N} f^{*}\left(x_{i}\right) \\
& \text { where } f^{*}(x)=f(x)+c\left(g(x)-E_{U[a, b]}[g]\right) \\
& \text { and } \quad x_{i} \sim U[a, b]
\end{aligned}
$$

- What is c ?
- Want to minimize variance: $\frac{\partial \operatorname{Var}\left(f^{*}\right)}{\partial c}=0$
- Gives us $c^{*}=-\frac{\operatorname{Cov}(f, g)}{\operatorname{Var}(g)}$
- New variance: $\operatorname{Var}\left(f^{*}\right)=\left[1-\rho^{2}(f, g)\right] \operatorname{Var}(f)$

$$
\text { (and }|\rho(f, g)| \leq 1)
$$

ρ is the Pearson correlation coefficient.

Control Variates

$$
\begin{aligned}
& I=\int_{a}^{b} \mathrm{~d} x f(x)=\int_{a}^{b} \mathrm{~d} x f^{*}(x) \approx \frac{b-a}{N} \sum_{i=1}^{N} f^{*}\left(x_{i}\right) \\
& \quad \text { where } \quad f^{*}(x)=f(x)+c\left(g(x)-E_{U[a, b][g]}\right) \\
& \text { and } \quad x_{i} \sim U[a, b]
\end{aligned}
$$

- We want $g(x)$ to be correlated to $f(x)$,
- and to have a known expectation value.

Combining CV \& IS

$$
\begin{align*}
I & =\int_{a}^{b} \mathrm{~d} x \frac{f(x)}{p(x)} p(x) & & \text { (Start with IS) } \\
& =\int_{a}^{b} \mathrm{~d} x\left[\frac{f(x)}{p(x)} p(x)+c\left(\frac{g(x)}{p(x)} p(x)+E_{p}\left[\frac{g}{p}\right]\right)\right] & & \text { (Add CV) } \tag{AddCV}\\
& \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}+c^{*}\left(\frac{g\left(x_{i}\right)}{p\left(x_{i}\right)}+E_{p}\left[\frac{g}{p}\right]\right) & & \left(\text { where } x_{i} \sim p(x)\right)
\end{align*}
$$

- So now we need an appropriate $p(x)$ for both $f(x)$ and $g(x)$ and an appropriate $g(x)$ such that we know $E[g / p]$.
- Is this helpful?

vegas

Uses an adaptive form of importance sampling

(1) Specify number of iterations and number of evaluations per iteration.
(2) Create map between uniformly-spaced y_{i} 's and $x_{i}^{\prime} s$ via Jacobian.
(3) Maps $[0,1]$ to $[a, b]$ varying widths between points.
(4) Estimate integral and update map for the number of iterations.

Figure 2: Map for 2 dimensions from a 4D double Gaussian. From 2111.07806 [1]

control-vegas

Remember, we want:
(1) A $g(x)$ that is correlated to $f(x)^{*}$,
(2) and whose expectation value is known.
New variance: $\operatorname{Var}\left(f^{}\right)=\left[1-\rho^{2}(f, g)\right] \operatorname{Var}(f)$

control-vegas

Remember, we want:
(1) A $g(x)$ that is correlated to $f(x)^{*}$,
(2) and whose expectation value is known.

Idea: we use the maps that vegas generates as $g(x)$. Why?
(1) The maps are are correlated to each other,
(2) and $E_{p}[g / p]=\int_{a}^{b} \mathrm{~d} x g(x)=1$ since $g(x)$ is a PDF.

$$
\text { *New variance: } \operatorname{Var}\left(f^{*}\right)=\left[1-\rho^{2}(f, g)\right] \operatorname{Var}(f)
$$

$$
\text { Is } g / p \text { valid? } \quad\left[\text { With } f(x)=\sum_{i}^{y_{0}} x_{i}\left(1-x_{i}\right)\right]
$$

20 iterations, 10^{4} evaluations per using 5 th iteration as CV

Is g / p valid? $\quad\left[\right.$ With $\left.f(x)=\sum_{i} x_{i}\left(1-x_{i}\right)\right]$

- g / p and f / p are correlated.
- Quantiatively shown with $\rho=0.60$.
- Expectation value is 1 .
- So this choice for g / p is valid.

Correlation

Updating Your CV

- vegas produces a map for each of the N iterations it completes.
- There are then $N-1$ choices for our CV.
- Which iteration minimizes the variance?
- Can we choose multiple iterations and have mulitple CVs?

Updating Your CV - 16D Gaussian

50 iterations, 2.5×10^{4} evaluations per, averaged over 10 runs

Updating Your CV - 16D Gaussian

50 iterations, 2.5×10^{4} evaluations per, averaged over 10 runs

How It Runs

```
from control_vegas import CVIntegrator
from control_vegas.functions import NGauss, NPolynomial
# Create function
ng = NGauss(16)
np = NPolynomial(96)
# Create integrator class
cvig = CVIntegrator(ng, evals=5000, tot_iters=50, cv_iters=[25, 27])
cvip = CVIntegrator(np, evals=5000, tot_iters=50, cv_iters='all')
# Run the integration
cvig.integrate()
cvip.integrate()
```


Does It Work?

Function	Dim	1 CV VPR	2 CV VPR	All CV VPR
	2	18.6%	31.0%	46.0%
Gaussian	4	17.4%	27.0%	39.0%
	8	16.9%	24.2%	34.5%
	16	12.7%	17.1%	24.5%
Polynomial	18	29.2%	44.0%	32.3%
	54	43.8%	48.0%	69.3%
	96	52.1%	61.4%	82.1%

(1) One and two control variate cases are using optimal choices,
(2) and adds no extra time to run.
(3) 'All CVs' takes $\sim 20 x$ longer.

What We Got \& Future Work

What we got:

- A for-free means for MC variance reduction built on vegas

What we want:
(1) Smarter ways of choosing $\mathrm{CV}(\mathrm{s})$
(2) Faster execution
(3) Usage of other variance reduction methods

- e.g, antithetic variates and ML models like normalizing flow
(4) A better name (there's some contenders)

References

[1] G. Peter Lepage. "Adaptive multidimensional integration: vegas enhanced". In: Journal of Computational Physics 439 (Aug. 2021), p. 110386. DoI:
10.1016/j.jcp.2021.110386. arXiv: 2111.07806 [comp-ph]. URL:
https://doi.org/10.1016\%2Fj.jcp.2021.110386.
[2] Christina Gao, Joshua Isaacson, and Claudius Krause. "i- flow: High-dimensional integration and sampling with normalizing flows". In: Machine Learning: Science and Technology 1.4 (Nov. 2020), p. 045023. DoI: 10.1088/2632-2153/abab62. URL: https://doi.org/10.1088\%2F2632-2153\%2Fabab62.
[3] William H. Press et al. Numerical Recipes 3rd Edition: The Art of Scientific Computing. 3rd ed. Cambridge University Press, 2007. IsBN: 0521880688.
[4] Jacob Scott. Control Vegas. Version 1.1.0. Apr. 2023. URL: https://github.com/crumpstrr33/control-vegas.

n Control Variates

The variance is:

$$
\begin{aligned}
\operatorname{Var}\left(f^{*}\right) & =\operatorname{Var}\left(f(x)+\sum_{i=1}^{n} c_{i}\left(g_{i}(x)-E\left[g_{i}\right]\right)\right) \\
& =\operatorname{Var}(f)+2 \operatorname{Cov}\left(f, \sum_{i=1}^{n} c_{i} g_{i}\right)+\operatorname{Var}\left(\sum_{i=1}^{n} c_{i} g_{i}\right) \\
& =\operatorname{Var}(f)+2 \sum_{i=1}^{n} c_{i} \operatorname{Cov}\left(f, g_{i}\right)+\sum_{i j}^{n} c_{i} c_{j} \operatorname{Cov}\left(g_{i}, g_{j}\right)
\end{aligned}
$$

where $\operatorname{Cov}\left(g_{i}, g_{i}\right)=\operatorname{Var}\left(g_{i}\right)$.

n Control Variates

Taking derivatives with respect to the coefficients gives

$$
\frac{\partial \operatorname{Var}\left(f^{*}\right)}{\partial c_{j}}=2 \operatorname{Cov}\left(f, g_{j}\right)+2 \sum_{i=1}^{n} c_{i} \operatorname{Cov}\left(g_{i}, g_{j}\right)
$$

and setting that equal to zero:

$$
\sum_{i=1}^{n} c_{i} \operatorname{Cov}\left(g_{i}, g_{j}\right)=-\operatorname{Cov}\left(f, g_{j}\right)
$$

If we let $A_{j}=-\operatorname{Cov}\left(f, g_{j}\right)$ and $B_{i j}=\operatorname{Cov}\left(g_{i}, g_{j}\right)$ then

$$
\sum_{i=1}^{n} B_{i j} c_{i}=A_{j} \quad \text { or } \quad \mathbf{c}=B^{-1} \mathbf{A}
$$

Scalar Top Loop

With $s_{12}=-s_{23}=130^{2}, s_{1}=s_{2}=s_{3}=0, s_{4}=125^{2}$ and $m_{t}=173.9$,

$$
\begin{aligned}
f_{5}= & S_{\mathrm{Box}}\left(s_{12}, s_{23}, s_{1}, s_{2}, s_{3}, s_{4}, m_{t}^{2}, m_{t}^{2}, m_{t}^{2}, m_{t}^{2}\right) \\
& +S_{\mathrm{box}}\left(s_{23}, s_{12}, s_{2}, s_{3}, s_{4}, s_{1}, m_{t}^{2}, m_{t}^{2}, m_{t}^{2}, m_{t}^{2}\right) \\
& +s_{\mathrm{box}}\left(s_{12}, s_{23}, s_{3}, s_{4}, s_{1}, s_{2}, m_{t}^{2}, m_{t}^{2}, m_{t}^{2}, m_{t}^{2}\right) \\
& +s_{\mathrm{box}}\left(s_{23}, s_{12}, s_{4}, s_{1}, s_{2}, s_{3}, m_{t}^{2}, m_{t}^{2}, m_{t}^{2}, m_{t}^{2}\right)
\end{aligned}
$$

where

$$
S_{\text {box }}\left(s_{12}, s_{23}, s_{1}, s_{2}, s_{3}, s_{4}, m_{1}^{2}, m_{2}^{2}, m_{3}^{2}, m_{4}^{2}\right)=\int_{0}^{1} \frac{\mathrm{~d} t_{1} \mathrm{~d} t_{2} \mathrm{~d} t_{3}}{\widetilde{\mathcal{F}}_{\text {box }}^{2}}
$$

and

$$
\begin{aligned}
\widetilde{\mathcal{F}}_{\text {box }}^{2}= & \left(1+t_{1}+t_{2}+t_{3}\right)\left(t_{1} m_{1}^{2}+t_{2} m_{2}^{2}+t_{3} m_{3}^{2}+m_{4}^{2}\right) \\
& -\left(s_{12} t_{2}+s_{23} t_{1} t_{3}+s_{1} t_{1}+s_{2} t_{1} t_{2}+s_{3} t_{2} t_{3}\right)
\end{aligned}
$$

Scalar Top Loop

More Results

		Vegas	1 CV			2 CVs			All CVs		
Function	Dim	Time (s)	VPR	Time (s)		VPR	Time (s)		VPR	Time (s)	
Gaussian	2	0.12	18.61\%	0.12	(1.0)	30.98\%	0.18	(1.4)	45.97\%	7.44	(60.1)
	4	0.23	17.40\%	0.23	(1.0)	27.04\%	0.32	(1.4)	38.97\%	8.91	(38.2)
	8	0.33	16.89\%	0.33	(1.0)	24.19\%	0.45	(1.4)	34.54\%	11.85	(36.2)
	16	0.62	12.74\%	0.62	(1.0)	17.09\%	0.93	(1.5)	24.54\%	19.65	(31.7)
Camel	2	0.19	0.17\%	0.19	(1.0)	0.77\%	0.29	(1.5)	1.06\%	8.63	(44.4)
	4	0.25	0.10\%	0.25	(1.0)	0.37\%	0.35	(1.4)	0.46\%	11.39	(46.1)
	8	0.45	0.22\%	0.45	(1.0)	0.24\%	0.64	(1.4)	0.36\%	15.03	(33.5)
	16	0.68	9.77\%	0.68	(1.0)	16.12\%	1.04	(1.5)	1.00\%	21.85	(32.1)
Entangled Circles	2	0.20	0.28\%	0.20	(1.0)	0.86\%	0.27	(1.3)	1.58\%	6.84	(34.5)
Annulus with Cuts	2	0.12	0.01\%	0.12	(1.0)	28.64\%	0.17	(1.4)	90.87\%	6.70	(55.6)
Scalar-top-loop	3	0.33	6.82\%	0.33	(1.0)	50.56\%	0.43	(1.3)	57.79\%	9.20	(27.9)
Polynomial	18	0.66	29.16\%	0.66	(1.0)	44.02\%	1.04	(1.6)	32.28\%	24.70	(37.4)
	54	3.23	43.75\%	3.23	(1.0)	48.02\%	5.00	(1.5)	69.32\%	71.22	(22.0)
	96	5.14	52.07\%	5.14	(1.0)	61.44\%	6.12	(1.2)	82.09\%	138.99	(27.1)

Table 1: Results for 50 iterations and 5000 events per iteration averaged over 10 runs. The lighter (darker) colored cells are for runs that are more than 1.0% (5.0%) off from the true value. The values in the parentheses in the time column are how much longer that instance took to run compared to the corresponding Vegas instance.

