Monte Carlo Variance Reduction One Control Variate at a Time

Jacob Scott

In collaboration with

KC Kong, Konstantin Matchev, Stephen Mrenna, Prasanth Shyamsundar

Pheno, May 2023

Motivation

The Why

- Comparing theory and experiment requires integration.
- Most modern simulation tools use MC/vegas.
- Good to have better accuracy with less resources.

Motivation

The Why

- Comparing theory and experiment requires integration.
- Most modern simulation tools use MC/vegas.
- Good to have better accuracy with less resources.

The What

A look at **Importance sampling** applied by vegas and **Control Variates** applied on top by control-vegas.

Monte Carlo Integration

Expectation Value

$$E_p[f] = \int_{\text{range of } p} dx f(x) p(x)$$
$$\approx \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

where $x_i \sim p(x)$

Integral

$$I = \int_{a}^{b} dx f(x)$$

$$= (b - a) \int_{a}^{b} dx \frac{f(x)}{b - a}$$

$$= (b - a) E_{U[a,b]}[f]$$

$$\approx \frac{b - a}{N} \sum_{i=1}^{N} f(x_i)$$

where $x_i \sim U[a, b]$.

Monte Carlo Integration

Expectation Value

$$E_p[f] = \int_{\text{range of } p} dx f(x) p(x)$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

where $x_i \sim p(x)$

Integral

$$I = \int_{a}^{b} dx f(x)$$

$$= (b - a) \int_{a}^{b} dx \frac{f(x)}{b - a}$$

$$= (b - a) E_{U[a,b]}[f]$$

$$\approx \frac{b - a}{N} \sum_{i=1}^{N} f(x_i)$$

where $x_i \sim U[a, b]$.

Monte Carlo Integration

- Very simple
- Scales well with dimensionality
- Will converge
- But it converges slowly
- Even worse if function is highly peaked

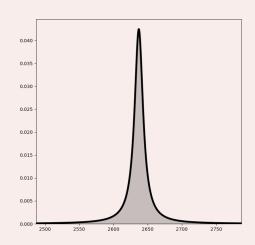


FIGURE 1: E.g. A Breit-Wigner distribution

Importance Sampling

$$I = \int_{a}^{b} dx f(x) = \int_{a}^{b} dx \frac{f(x)}{p(x)} p(x) = E_{p} \left[\frac{f}{p} \right] \approx \frac{1}{N} \sum_{i=0}^{N} \frac{f(x_{i})}{p(x_{i})}$$
where $x_{i} \sim p(x)$
and $\int_{a}^{b} dx \, p(x) = 1$

Importance Sampling

$$I = \int_{a}^{b} dx f(x) = \int_{a}^{b} dx \frac{f(x)}{p(x)} p(x) = E_{p} \left[\frac{f}{p} \right] \approx \frac{1}{N} \sum_{i=0}^{N} \frac{f(x_{i})}{p(x_{i})}$$
where $x_{i} \sim p(x)$
and $\int_{a}^{b} dx p(x) = 1$

- If $p(x) \propto f(x)$, then we find exact value of integral.
- So we want a p that mimics f, e.g. p peaks where f does.

Control Variates

$$I = \int_a^b \mathrm{d}x f(x) = \int_a^b \mathrm{d}x f^*(x) \approx \frac{b-a}{N} \sum_{i=1}^N f^*(x_i)$$
where $f^*(x) = f(x) + c \Big(g(x) - E_{U[a,b]}[g] \Big)$
and $x_i \sim U[a,b]$

Control Variates

$$I = \int_a^b \mathrm{d}x f(x) = \int_a^b \mathrm{d}x f^*(x) \approx \frac{b-a}{N} \sum_{i=1}^N f^*(x_i)$$
where $f^*(x) = f(x) + c \Big(g(x) - E_{U[a,b]}[g] \Big)$
and $x_i \sim U[a,b]$

- What is *c*?
 - Want to minimize variance: $\frac{\partial Var(f^*)}{\partial c} = 0$
 - Gives us $c^* = -\frac{\text{Cov}(f, g)}{\text{Var}(g)}$
- New variance: $Var(f^*) = \left[1 \rho^2(f, g)\right] Var(f)$ (and $|\rho(f, g)| \le 1$)

Control Variates

$$I = \int_a^b \mathrm{d}x f(x) = \int_a^b \mathrm{d}x f^*(x) \approx \frac{b-a}{N} \sum_{i=1}^N f^*(x_i)$$
where $f^*(x) = f(x) + c \Big(g(x) - E_{U[a,b]}[g] \Big)$
and $x_i \sim U[a,b]$

- We want g(x) to be correlated to f(x),
- and to have a known expectation value.

Combining CV & IS

$$I = \int_{a}^{b} dx \frac{f(x)}{p(x)} p(x)$$
 (Start with IS)

$$= \int_{a}^{b} dx \left[\frac{f(x)}{p(x)} p(x) + c \left(\frac{g(x)}{p(x)} p(x) + E_{p} \left[\frac{g}{p} \right] \right) \right]$$
 (Add CV)

$$\approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_{i})}{p(x_{i})} + c^{*} \left(\frac{g(x_{i})}{p(x_{i})} + E_{p} \left[\frac{g}{p} \right] \right)$$
 (where $x_{i} \sim p(x)$)

- So now we need an appropriate p(x) for both f(x) and g(x) and an appropriate g(x) such that we know E[g/p].
- Is this helpful?

vegas

Uses an adaptive form of importance sampling

- Specify number of iterations and number of evaluations per iteration.
- Create map between uniformly-spaced y_i's and x'_is via Jacobian.
- **3** Maps [0, 1] to [a, b] varying widths between points.
- Estimate integral and update map for the number of iterations.

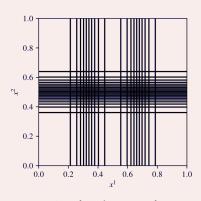


FIGURE 2: Map for 2 dimensions from a 4D double Gaussian. From 2111.07806 [1]

control-vegas

Remember, we want:

- **1** A g(x) that is correlated to $f(x)^*$,
- 2 and whose expectation value is known.

^{*}New variance: $Var(f^*) = \left[1 - \rho^2(f, g)\right] Var(f)$

control-vegas

Remember, we want:

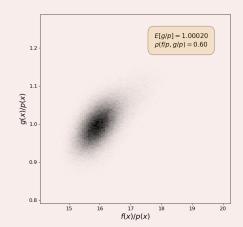
- **1** A g(x) that is correlated to $f(x)^*$,
- 2 and whose expectation value is known.

Idea: we use the maps that vegas generates as g(x). Why?

- 1 The maps are are correlated to each other,
- 2 and $E_p[g/p] = \int_a^b dx \, g(x) = 1$ since g(x) is a PDF.

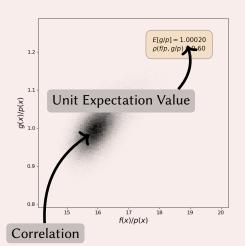
^{*}New variance: $Var(f^*) = \left[1 - \rho^2(f, g)\right] Var(f)$

Is
$$g/p$$
 valid? $\left[\text{With } f(x) = \sum_{i=1}^{\infty} x_i (1-x_i) \right]$



20 iterations, 10⁴ evaluations per using 5th iteration as CV

With
$$f(x) = \sum_{i=1}^{\infty} x_i(1-x_i)$$



- g/p and f/p are correlated.
 - Quantiatively shown with $\rho = 0.60$.
- Expectation value is 1.
- So this choice for g/p is valid.

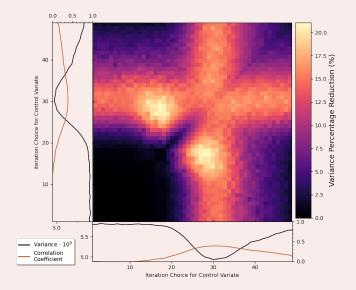
INTRO VARIANCE REDUCTION IMPLEMENTATION RESULTS REFERENCES EXTRA

Updating Your CV

- vegas produces a map for each of the N iterations it completes.
- There are then N-1 choices for our CV.
- Which iteration minimizes the variance?
- Can we choose multiple iterations and have mulitple CVs?

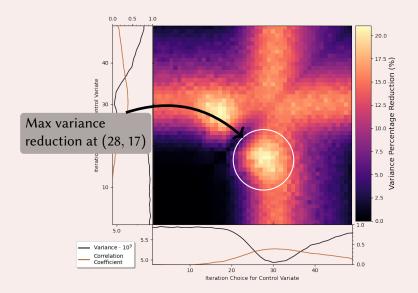
Implementation

Updating Your CV - 16D Gaussian



50 iterations, 2.5×10^4 evaluations per, averaged over 10 runs

Updating Your CV - 16D Gaussian



50 iterations, 2.5×10^4 evaluations per, averaged over 10 runs

INTRO VARIANCE REDUCTION IMPLEMENTATION RESULTS REFERENCES REFERENCES EXTRA

How It Runs

```
from control_vegas import CVIntegrator
1
    from control_vegas.functions import NGauss, NPolynomial
3
    # Create function
4
    nq = NGauss(16)
    np = NPolynomial(96)
6
7
    # Create integrator class
    cvig = CVIntegrator(ng, evals=5000, tot_iters=50, cv_iters=[25, 27])
    cvip = CVIntegrator(np, evals=5000, tot_iters=50, cv_iters='all')
10
11
    # Run the integration
12
13
    cvig.integrate()
    cvip.integrate()
14
```

Does It Work?

Function	Dim	1 CV VPR	2 CV VPR	All CV VPR
Gaussian	2	18.6%	31.0%	46.0%
	4	17.4%	27.0%	39.0%
	8	16.9%	24.2%	34.5%
	16	12.7%	17.1%	24.5%
Polynomial	18	29.2%	44.0%	32.3%
	54	43.8%	48.0%	69.3%
	96	52.1%	61.4%	82.1%

- One and two control variate cases are using optimal choices,
- 2 and adds no extra time to run.
- **3** 'All CVs' takes \sim 20x longer.

What We Got & Future Work

What we got:

• A for-free means for MC variance reduction built on vegas

What we want:

- Smarter ways of choosing CV(s)
- Paster execution
- 3 Usage of other variance reduction methods
 - e.g, antithetic variates and ML models like normalizing flow
- **4** A better name (there's some contenders)

INTRO VARIANCE REDUCTION IMPLEMENTATION RESULTS REFERENCES EXTRA

References

- [1] G. Peter Lepage. "Adaptive multidimensional integration: vegas enhanced". In: Journal of Computational Physics 439 (Aug. 2021), p. 110386. DOI: 10.1016/j.jcp.2021.110386. arXiv: 2111.07806 [comp-ph]. URL: https://doi.org/10.1016%2Fj.jcp.2021.110386.
- [2] Christina Gao, Joshua Isaacson, and Claudius Krause. "i-flow: High-dimensional integration and sampling with normalizing flows". In: *Machine Learning: Science and Technology* 1.4 (Nov. 2020), p. 045023. DOI: 10.1088/2632-2153/abab62. URL: https://doi.org/10.1088%2F2632-2153%2Fabab62.
- [3] William H. Press et al. *Numerical Recipes 3rd Edition: The Art of Scientific Computing*. 3rd ed. Cambridge University Press, 2007. ISBN: 0521880688.
- [4] Jacob Scott. Control Vegas. Version 1.1.0. Apr. 2023. URL: https://github.com/crumpstrr33/control-vegas.

n Control Variates

The variance is:

$$\operatorname{Var}(f^*) = \operatorname{Var}\left(f(x) + \sum_{i=1}^n c_i(g_i(x) - E[g_i])\right)$$

$$= \operatorname{Var}(f) + 2\operatorname{Cov}\left(f, \sum_{i=1}^n c_i g_i\right) + \operatorname{Var}\left(\sum_{i=1}^n c_i g_i\right)$$

$$= \operatorname{Var}(f) + 2\sum_{i=1}^n c_i \operatorname{Cov}(f, g_i) + \sum_{i=1}^n c_i c_i \operatorname{Cov}(g_i, g_i)$$

where $Cov(g_i, g_i) = Var(g_i)$.

n Control Variates

Taking derivatives with respect to the coefficients gives

$$\frac{\partial \operatorname{Var}(f^*)}{\partial c_j} = 2\operatorname{Cov}(f, g_j) + 2\sum_{i=1}^n c_i \operatorname{Cov}(g_i, g_j)$$

and setting that equal to zero:

$$\sum_{i=1}^{n} c_i \operatorname{Cov}(g_i, g_j) = -\operatorname{Cov}(f, g_j).$$

If we let $A_i = -\text{Cov}(f, g_i)$ and $B_{ii} = \text{Cov}(g_i, g_i)$ then

$$\sum_{i=1}^{n} B_{ij} c_i = A_j \quad \text{or} \quad \mathbf{c} = B^{-1} \mathbf{A}$$

Scalar Top Loop

With
$$s_{12} = -s_{23} = 130^2$$
, $s_1 = s_2 = s_3 = 0$, $s_4 = 125^2$ and $m_t = 173.9$,

$$f_5 = S_{\text{Box}}(s_{12}, s_{23}, s_1, s_2, s_3, s_4, m_t^2, m_t^2, m_t^2, m_t^2) + S_{\text{box}}(s_{23}, s_{12}, s_2, s_3, s_4, s_1, m_t^2, m_t^2, m_t^2, m_t^2) + S_{\text{box}}(s_{12}, s_{23}, s_3, s_4, s_1, s_2, m_t^2, m_t^2, m_t^2, m_t^2)$$

 $+ S_{\text{boy}}(s_{23}, s_{12}, s_4, s_1, s_2, s_3, m_t^2, m_t^2, m_t^2, m_t^2)$

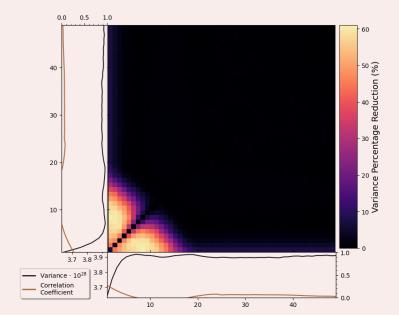
where

$$S_{\text{box}}(s_{12}, s_{23}, s_1, s_2, s_3, s_4, m_1^2, m_2^2, m_3^2, m_4^2) = \int_0^1 \frac{\mathrm{d}t_1 \, \mathrm{d}t_2 \, \mathrm{d}t_3}{\widetilde{\mathcal{F}}_{\text{box}}^2}$$

and

$$\widetilde{\mathcal{F}}_{\text{box}}^2 = (1 + t_1 + t_2 + t_3) (t_1 m_1^2 + t_2 m_2^2 + t_3 m_3^2 + m_4^2) - (s_{12} t_2 + s_{23} t_1 t_3 + s_1 t_1 + s_2 t_1 t_2 + s_3 t_2 t_3)$$

Scalar Top Loop



More Results

		Vegas	1 CV			2 CVs			All CVs		
Function	Dim	Time (s)	VPR	Time (s)		VPR	Time (s)		VPR	Time (s)	
Gaussian	2	0.12	18.61%	0.12	(1.0)	30.98%	0.18	(1.4)	45.97%	7.44	(60.1)
	4	0.23	17.40%	0.23	(1.0)	27.04%	0.32	(1.4)	38.97%	8.91	(38.2)
	8	0.33	16.89%	0.33	(1.0)	24.19%	0.45	(1.4)	34.54%	11.85	(36.2)
	16	0.62	12.74%	0.62	(1.0)	17.09%	0.93	(1.5)	24.54%	19.65	(31.7)
Camel	2	0.19	0.17%	0.19	(1.0)	0.77%	0.29	(1.5)	1.06%	8.63	(44.4)
	4	0.25	0.10%	0.25	(1.0)	0.37%	0.35	(1.4)	0.46%	11.39	(46.1)
	8	0.45	0.22%	0.45	(1.0)	0.24%	0.64	(1.4)	0.36%	15.03	(33.5)
	16	0.68	9.77%	0.68	(1.0)	16.12%	1.04	(1.5)	1.00%	21.85	(32.1)
Entangled Circles	2	0.20	0.28%	0.20	(1.0)	0.86%	0.27	(1.3)	1.58%	6.84	(34.5)
Annulus with Cuts	2	0.12	0.01%	0.12	(1.0)	28.64%	0.17	(1.4)	90.87%	6.70	(55.6)
Scalar-top-loop	3	0.33	6.82%	0.33	(1.0)	50.56%	0.43	(1.3)	57.79%	9.20	(27.9)
Polynomial	18	0.66	29.16%	0.66	(1.0)	44.02%	1.04	(1.6)	32.28%	24.70	(37.4)
	54	3.23	43.75%	3.23	(1.0)	48.02%	5.00	(1.5)	69.32%	71.22	(22.0)
	96	5.14	52.07%	5.14	(1.0)	61.44%	6.12	(1.2)	82.09%	138.99	(27.1)

Table 1: Results for 50 iterations and 5000 events per iteration averaged over 10 runs. The lighter (darker) colored cells are for runs that are more than 1.0% (5.0%) off from the true value. The values in the parentheses in the time column are how much longer that instance took to run compared to the corresponding Vegas instance.