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Motivation

The Why
• Comparing theory and experiment requires integration.

• Most modern simulation tools use MC/vegas.

• Good to have better accuracy with less resources.

The What
A look at Importance sampling applied by vegas and Control
Variates applied on top by control-vegas.
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Monte Carlo Integration

Expectation Value

Ep[f ] =
∫

range of p

dx f (x)p(x)

≈ 1

N

N∑
i=1

f (xi)

where xi ∼ p(x)

Integral

I =
∫ b

a
dx f (x)

= (b − a)
∫ b

a
dx

f (x)
b − a

= (b − a)EU[a,b][f ]

≈ b − a
N

N∑
i=1

f (xi)

where xi ∼ U[a, b].

• Very simple

• Scales well with

dimensionality

• Will converge

• But it converges

slowly

• Even worse if function

is highly peaked

Figure 1: E.g. A Breit-Wigner distribution
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Importance Sampling

I =
∫ b

a
dx f (x) =

∫ b

a
dx

f (x)
p(x)

p(x) = Ep

[
f
p

]
≈ 1

N

N∑
i=0

f (xi)
p(xi)

where xi ∼ p(x)

and

∫ b

a
dx p(x) = 1
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Importance Sampling

I =
∫ b

a
dx f (x) =

∫ b

a
dx

f (x)
p(x)

p(x) = Ep

[
f
p

]
≈ 1

N

N∑
i=0

f (xi)
p(xi)

where xi ∼ p(x)

and

∫ b

a
dx p(x) = 1

• If p(x) ∝ f (x), then we find exact value of integral.

• So we want a p that mimics f , e.g. p peaks where f does.
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Control Variates

I =
∫ b

a
dx f (x) =

∫ b

a
dx f ∗(x) ≈ b − a

N

N∑
i=1

f ∗(xi)

where f ∗(x) = f (x) + c
(
g(x)− EU[a,b][g]

)
and xi ∼ U[a, b]

• We want g(x) to be correlated to f (x),
• and to have a known expectation value.
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Control Variates

I =
∫ b

a
dx f (x) =

∫ b

a
dx f ∗(x) ≈ b − a

N

N∑
i=1

f ∗(xi)

where f ∗(x) = f (x) + c
(
g(x)− EU[a,b][g]

)
and xi ∼ U[a, b]

• What is c?
▶ Want to minimize variance:

∂Var(f ∗)
∂c

= 0

▶ Gives us c∗ = −Cov(f , g)
Var(g)

• New variance: Var(f ∗) =
[
1− ρ2(f , g)

]
Var(f )

(and |ρ(f , g)| ≤ 1)

• We want g(x) to be correlated to f (x),
• and to have a known expectation value.

ρ is the Pearson correlation coefficient.
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Combining CV & IS

I =
∫ b

a
dx

f (x)
p(x)

p(x) (Start with IS)

=

∫ b

a
dx
[
f (x)
p(x)

p(x) + c
(
g(x)
p(x)

p(x) + Ep

[
g
p

])]
(Add CV)

≈ 1

N

N∑
i=1

f (xi)
p(xi)

+ c∗
(
g(xi)
p(xi)

+ Ep

[
g
p

])
(where xi ∼ p(x))

• So now we need an appropriate p(x) for both f (x) and g(x)
and an appropriate g(x) such that we know E[g/p].

• Is this helpful?
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vegas

Uses an adaptive form of
importance sampling

1 Specify number of iterations

and number of evaluations

per iteration.

2 Create map between

uniformly-spaced yi’s and
x ′i s via Jacobian.

3 Maps [0, 1] to [a, b] varying
widths between points.

4 Estimate integral and update

map for the number of

iterations.

Figure 2:Map for 2 dimensions from a 4D

double Gaussian. From 2111.07806 [1]
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control-vegas

Remember, we want:

1 A g(x) that is correlated to f (x)*,

2 and whose expectation value is known.

Idea: we use the maps that vegas generates as g(x).
Why?

1 The maps are are correlated to each other,

2 and Ep[g/p] =
∫ b

a
dx g(x) = 1 since g(x) is a PDF.

*New variance: Var(f ∗) =
[
1− ρ2(f , g)

]
Var(f )
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Is g/p valid?
[
With f (x) =

96∑
i

xi(1− xi)
]

20 iterations, 10
4
evaluations per using 5th iteration as CV
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Is g/p valid?
[
With f (x) =

96∑
i

xi(1− xi)
]

Correlation

Unit Expectation Value

• g/p and f /p are correlated.

▶ Quantiatively shown with

ρ = 0.60.

• Expectation value is 1.

• So this choice for g/p is

valid.

20 iterations, 10
4
evaluations per using 5th iteration as CV
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Updating Your CV

- 16D Gaussian

• vegas produces a map for each of the N iterations it completes.

• There are then N − 1 choices for our CV.

• Which iteration minimizes the variance?

• Can we choose multiple iterations and have mulitple CVs?

50 iterations, 2.5× 10
4

evaluations per, averaged over 10 runs
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Updating Your CV - 16D Gaussian

Max variance

reduction at (28, 17)

50 iterations, 2.5× 10
4

evaluations per, averaged over 10 runs
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How It Runs

1 from control_vegas import CVIntegrator
2 from control_vegas.functions import NGauss, NPolynomial
3
4 # Create function
5 ng = NGauss(16)
6 np = NPolynomial(96)
7
8 # Create integrator class
9 cvig = CVIntegrator(ng, evals=5000, tot_iters=50, cv_iters=[25, 27])
10 cvip = CVIntegrator(np, evals=5000, tot_iters=50, cv_iters='all')
11
12 # Run the integration
13 cvig.integrate()
14 cvip.integrate()
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Does It Work?

Function Dim 1 CV VPR 2 CV VPR All CV VPR

Gaussian

2 18.6% 31.0% 46.0%

4 17.4% 27.0% 39.0%

8 16.9% 24.2% 34.5%

16 12.7% 17.1% 24.5%

Polynomial

18 29.2% 44.0% 32.3%

54 43.8% 48.0% 69.3%

96 52.1% 61.4% 82.1%

1 One and two control variate cases are using optimal choices,

2 and adds no extra time to run.

3 ‘All CVs’ takes ∼ 20x longer.

50 iterations, 5000 evaluations per, averaged over 10 runs



Intro Variance Reduction Implementation Results References References Extra

What We Got & Future Work

What we got:

• A for-free means for MC variance reduction built on vegas

What we want:

1 Smarter ways of choosing CV(s)

2 Faster execution

3 Usage of other variance reduction methods

▶ e.g, antithetic variates and ML models like normalizing flow

4 A better name (there’s some contenders)
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n Control Variates

The variance is:

Var (f ∗) = Var

(
f (x) +

n∑
i=1

ci(gi(x)− E[gi])

)

= Var (f ) + 2Cov

(
f ,

n∑
i=1

cigi

)
+ Var

(
n∑

i=1

cigi

)

= Var (f ) + 2

n∑
i=1

ciCov (f , gi) +
n∑
ij

cicjCov (gi, gj)

where Cov (gi, gi) = Var (gi).
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n Control Variates

Taking derivatives with respect to the coefficients gives

∂Var (f ∗)
∂cj

= 2Cov (f , gj) + 2

n∑
i=1

ciCov (gi, gj)

and setting that equal to zero:

n∑
i=1

ciCov (gi, gj) = −Cov (f , gj) .

If we let Aj = −Cov (f , gj) and Bij = Cov (gi, gj) then

n∑
i=1

Bijci = Aj or c = B−1A
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Scalar Top Loop

With s12 = −s23 = 130
2
, s1 = s2 = s3 = 0, s4 = 125

2
and mt = 173.9,

f5 = SBox(s12, s23, s1, s2, s3, s4,m2

t ,m
2

t ,m
2

t ,m
2

t )

+ Sbox(s23, s12, s2, s3, s4, s1,m2

t ,m
2

t ,m
2

t ,m
2

t )

+ Sbox(s12, s23, s3, s4, s1, s2,m2

t ,m
2

t ,m
2

t ,m
2

t )

+ Sbox(s23, s12, s4, s1, s2, s3,m2

t ,m
2

t ,m
2

t ,m
2

t )

where

Sbox(s12, s23, s1, s2, s3, s4,m2

1
,m2

2
,m2

3
,m2

4
) =

∫
1

0

dt1 dt2 dt3
F̃2

box

and

F̃2

box
=
(
1+ t1 + t2 + t3

)(
t1m2

1
+ t2m2

2
+ t3m2

3
+m2

4

)
−
(
s12t2 + s23t1t3 + s1t1 + s2t1t2 + s3t2t3

)
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Scalar Top Loop
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More Results

Vegas 1 CV 2 CVs All CVs

Function Dim Time (s) VPR Time (s) VPR Time (s) VPR Time (s)

Gaussian

2 0.12 18.61% 0.12 (1.0) 30.98% 0.18 (1.4) 45.97% 7.44 (60.1)

4 0.23 17.40% 0.23 (1.0) 27.04% 0.32 (1.4) 38.97% 8.91 (38.2)

8 0.33 16.89% 0.33 (1.0) 24.19% 0.45 (1.4) 34.54% 11.85 (36.2)

16 0.62 12.74% 0.62 (1.0) 17.09% 0.93 (1.5) 24.54% 19.65 (31.7)

Camel

2 0.19 0.17% 0.19 (1.0) 0.77% 0.29 (1.5) 1.06% 8.63 (44.4)

4 0.25 0.10% 0.25 (1.0) 0.37% 0.35 (1.4) 0.46% 11.39 (46.1)

8 0.45 0.22% 0.45 (1.0) 0.24% 0.64 (1.4) 0.36% 15.03 (33.5)

16 0.68 9.77% 0.68 (1.0) 16.12% 1.04 (1.5) 1.00% 21.85 (32.1)

Entangled Circles 2 0.20 0.28% 0.20 (1.0) 0.86% 0.27 (1.3) 1.58% 6.84 (34.5)

Annulus with Cuts 2 0.12 0.01% 0.12 (1.0) 28.64% 0.17 (1.4) 90.87% 6.70 (55.6)

Scalar-top-loop 3 0.33 6.82% 0.33 (1.0) 50.56% 0.43 (1.3) 57.79% 9.20 (27.9)

Polynomial

18 0.66 29.16% 0.66 (1.0) 44.02% 1.04 (1.6) 32.28% 24.70 (37.4)

54 3.23 43.75% 3.23 (1.0) 48.02% 5.00 (1.5) 69.32% 71.22 (22.0)

96 5.14 52.07% 5.14 (1.0) 61.44% 6.12 (1.2) 82.09% 138.99 (27.1)

Table 1: Results for 50 iterations and 5000 events per iteration averaged over 10 runs. The

lighter (darker) colored cells are for runs that are more than 1.0% (5.0%) off from the true

value. The values in the parentheses in the time column are how much longer that instance

took to run compared to the corresponding Vegas instance.
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