Oscillation Phenomena in Nambu Quantum Mechanics

Nabin Bhatta

Virginia Polytechnic Institute and State University Department of Physics
nabinb@vt.edu

Pheno 2023
University of Pittsburgh
May 08, 2023

Talk Based on:

- D. Minic and C. H. Tze, "Nambu Quantum Mechanics: A nonlinear generalization of Geometric Quantum Mechanics," Phys. Lett. B 536 (2002) 305-314 [hep-th/0202173 [hep-th]],
- D. Minic, T. Takeuchi, and C. H. Tze, "Interference and Oscillation in Nambu Quantum Mechanics," Phys. Rev. D 104 (2021), L051301 [hep-ph/2012.06583 [hep-ph]],
- D. Minic, T. Takeuchi, and NB, "A Generalization of Geometric Quantum Mechanics" (In preparation).

Motivation for the Name

- Minic and Tze's paper was inspired by:
Y. Nambu,
"Generalized Hamiltonian Dynamics,"
Phys. Rev. D 7 (1973) 2405-2412.
- Nambu QM is a particular generalization of canonical QM and can be viewed as its two-parameter deformation.

Study of Quantum Foundations

- Contrasting quantum mechanics (QM) with classical theories (ex. Bell's theorem(s), Legget-Garg inequality).
- Correspondence of mathematical structure to reality (interpretations of QM).
- Looking for new effects in QM (ex. triple interference).
- Putting the axioms to test \rightarrow generalizing QM (ex. quaternionic QM, Nambu QM).

Classical Mechanics: Poisson Bracket

- For two physical observables f and g, their Poisson bracket is:

$$
\{f, g\}=\frac{\partial f}{\partial q} \frac{\partial g}{\partial p}-\frac{\partial g}{\partial q} \frac{\partial f}{\partial p}=\varepsilon_{i j} \frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{j}}, \varepsilon_{12}=1 .
$$

- The time evolution of a quantity f is given by:

$$
\frac{d f}{d t}=\{f, H\}
$$

- For a harmonic oscillator, $H=\omega\left(\frac{p^{2}}{2}+\frac{q^{2}}{2}\right), \frac{d p}{d t}=-\omega q$.

Nambu Classical Mechanics: Nambu Bracket

- Using Louiville theorem as a guiding principle, a structure more general than the Poisson bracket was postulated by Nambu.
- A ternary Nambu bracket is given by:

$$
\{f, g, h\}=\varepsilon_{i j k} \frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial q_{j}} \frac{\partial h}{\partial q_{k}}, \varepsilon_{123}=1
$$

- For two conserved quantities H_{1} and H_{2}, an observable f evolves as:

$$
\frac{d f}{d t}=\left\{f, H_{1}, H_{2}\right\}
$$

Dynamics of an Asymmetric Top

- For a free asymmetric top:

$$
H_{1}=E=\frac{L_{1}^{2}}{2 l_{1}}+\frac{L_{2}^{2}}{2 l_{2}}+\frac{L_{3}^{2}}{2 l_{3}}, \quad H_{2}=\frac{L^{2}}{2}=\frac{1}{2}\left(L_{1}^{2}+L_{2}^{2}+L_{3}^{2}\right)
$$

- The time evolution of L_{i} is given by the ternary Nambu bracket:

$$
\frac{d L_{i}}{d t}=\left\{L_{i}, H_{1}, H_{2}\right\}=\varepsilon_{i j k}\left(\frac{1}{I_{j}}-\frac{1}{I_{k}}\right) L_{j} L_{k}
$$

- The solution is given by Jacobi elliptic functions.

$$
L_{1}(t)=N_{1} \operatorname{cn}(\Omega t), L_{2}(t)=-N_{2} \operatorname{sn}(\Omega t), L_{3}(t)=-N_{3} \operatorname{dn}(\Omega t)
$$

Geometric Quantum Mechanics

- The dynamics of $\psi \in \mathbb{C}$ can be thought as the dynamics of a set of classical harmonic oscillators.
- More concretely, expand ψ in terms of eigenstates of the Hamiltonian as

$$
|\psi(t)\rangle=\sum_{n}|n\rangle \underbrace{\langle n \mid \psi(t)\rangle}_{\psi_{n}(t)}=\sum_{n} \psi_{n}(t)|n\rangle
$$

- Then the Schrodinger equation implies:

$$
\psi_{n}(t)=N e^{-i \omega_{n}\left(t-t_{n}\right)}
$$

Quantum Dynamics as Classical Harmonic Oscillators

- Making the change of notation

$$
\begin{aligned}
q_{n}=\operatorname{Re} \psi_{n}, p_{n} & =\operatorname{Im} \psi_{n} \\
\text { we get } \dot{q_{n}}=\omega_{n} p_{n} \text { and } \dot{p_{n}} & =-\omega_{n} q_{n}
\end{aligned}
$$

- The generic solution is

$$
\vec{\psi}(t) \equiv\left[\begin{array}{l}
q_{n}(t) \\
p_{n}(t)
\end{array}\right]=N_{n}\left[\begin{array}{r}
\cos \omega_{n}\left(t-t_{n}\right) \\
-\sin \omega_{n}\left(t-t_{n}\right)
\end{array}\right]
$$

- The dynamics is given by

$$
\dot{p_{n}}=\left\{p_{n}, H\right\}, \dot{q}_{n}=\left\{q_{n}, H\right\}, H=\sum_{n} \omega_{n}\left(\frac{q_{n}^{2}}{2}+\frac{p_{n}^{2}}{2}\right) .
$$

Generalization to Nambu QM

- Phase space: Harmonic oscillator \rightarrow Asymmetric top:

$$
\vec{\psi}_{n}=\left[\begin{array}{l}
q_{n} \\
p_{n}
\end{array}\right] \quad \rightarrow \quad \vec{\psi}_{n}=\left[\begin{array}{l}
q_{n} \\
p_{n} \\
s_{n}
\end{array}\right]
$$

- Dynamics governed by: $H_{1}=\sum_{n}\left(\frac{p_{n}^{2}}{2 l_{1}}+\frac{q_{n}^{2}}{2 l_{2}}+\frac{s_{n}^{2}}{2 l_{3}}\right)$ and $H_{2}=\sum_{n}\left(\frac{q_{n}^{2}}{2}+\frac{p_{n}^{2}}{2}+\frac{s_{n}^{2}}{2}\right)$.
- New time evolution:

$$
\vec{\Psi}_{n}(t)=N_{n}\left[\begin{array}{r}
c_{\xi} \operatorname{cn}\left(\Omega_{n}\left(t-t_{n}\right), k\right) \\
-\kappa_{\xi} \operatorname{sn}\left(\Omega_{n}\left(t-t_{n}\right), k\right) \\
-s_{\xi} \operatorname{dn}\left(\Omega_{n}\left(t-t_{n}\right), k\right)
\end{array}\right]
$$

where $0 \leq k<1$ and $-\frac{\pi}{2} \leq \xi \leq \frac{\pi}{2}$ are the deformation parameters, and $c_{\xi}=\cos \xi, s_{\xi}=\sin \xi, \kappa_{\xi}=\sqrt{c_{\xi}^{2}+k^{2} s_{\xi}^{2}}$.

Asymptotics of Elliptic Functions

Expansion of the elliptic functions in k for $\Omega=\left(\frac{2 K}{\pi}\right) \omega$:

$$
\begin{aligned}
& \operatorname{sn}(\Omega t, k)=\left(1+\frac{k^{2}}{16}+\frac{7 k^{2}}{256}+\cdots\right) \sin (\omega t) \\
& \quad+\left(\frac{k^{2}}{16}+\frac{k^{4}}{32}+\cdots\right) \sin (3 \omega t)+\left(\frac{k^{4}}{256}+\cdots\right) \sin (5 \omega t)+\cdots, \\
& \operatorname{cn}(\Omega t, k)=\left(1-\frac{k^{2}}{16}-\frac{9 k^{4}}{256}\right) \cos (\omega t) \\
& \quad+\left(\frac{k^{2}}{16}+\frac{k^{4}}{32}\right) \cos (3 \omega t)+\left(\frac{k^{4}}{256}+\cdots\right) \cos (5 \omega t)+\cdots \\
& \operatorname{dn}(\Omega t, k)=\left(1-\frac{k^{2}}{4}-\frac{5 k^{4}}{64}\right) \\
& \quad+\left(\frac{k^{2}}{4}+\frac{k^{4}}{16}\right) \cos (2 \omega t)+\left(\frac{k^{4}}{64}+\cdots\right) \cos (4 \omega t)+\cdots
\end{aligned}
$$

Phase Space of Nambu QM

Figure: Phase portraits of an asymmetric top for various values of the deformation parameters. Blue: $k=0.8, \xi=\frac{\pi}{4}$, red: $k=0.9, \xi=\frac{\pi}{3}$. It is clear that for $k=\xi=0$ (brown), we get the phase portrait of a harmonic oscillator.

Inner Product in Canonical QM

- In canonical QM, for two states ψ and ϕ,

$$
\begin{array}{r}
|\psi\rangle=\sum_{n} \psi_{n}|n\rangle \text { and }|\phi\rangle=\sum_{m} \phi_{m}|m\rangle \\
\Longrightarrow\langle\psi \mid \phi\rangle=\left(\sum_{n} \psi_{n}^{*}\langle n|\right)\left(\sum_{m} \phi_{m}|m\rangle\right) \\
=\underbrace{\sum_{n}\left(\vec{\psi}_{n} \cdot \vec{\phi}_{n}\right)}_{g(\psi, \phi)}+i \underbrace{\sum_{n}\left(\vec{\psi}_{n} \times \vec{\phi}_{n}\right)}_{\varepsilon(\psi, \phi)}, \\
|\langle\psi \mid \phi\rangle|^{2}=g(\psi, \phi)^{2}+\varepsilon(\psi, \phi)^{2} .
\end{array}
$$

Inner product in Nambu QM

- In Nambu QM, the wavefunctions are generalized to vectors in 3D:

$$
g(\Psi, \Phi)=\sum_{n}\left(\vec{\Psi}_{n} \cdot \vec{\Phi}_{n}\right) \text { and } \vec{\varepsilon}(\Psi, \Phi)=\sum_{n}\left(\vec{\Psi}_{n} \times \vec{\Phi}_{n}\right)
$$

$$
\text { so that }|\langle\Psi \mid \Phi\rangle|^{2}=g(\Psi, \Phi)^{2}+\vec{\varepsilon}(\Psi, \Phi) \cdot \vec{\varepsilon}(\Psi, \Phi)
$$

- This generalization has physical consequences in particle oscillation phenomena.

Neutrino Flavor Oscillation

- Consider two flavor oscillation with flavor eigenstates $|\alpha\rangle$ and $|\beta\rangle$ and mass eigenstates $|1\rangle$ and $|2\rangle$,

$$
\left[\begin{array}{l}
|\alpha\rangle \\
|\beta\rangle
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
|1\rangle \\
|2\rangle
\end{array}\right]
$$

- Transition probability in canonical QM:

$$
\begin{aligned}
P(\alpha \rightarrow \beta) & =g(\beta, \psi(t))^{2}+\varepsilon(\beta, \psi(t))^{2} \\
& =\sin ^{2} 2 \theta \sin ^{2} \underbrace{\left.\frac{\left(\omega_{1}-\omega_{2}\right) t}{2}\right]}_{\frac{\delta m_{12}^{2}}{4 E} L}
\end{aligned}
$$

Flavor Oscillation in Nambu QM

- In Nambu QM, transition probability up to order k^{2} :

$$
P(\alpha \rightarrow \beta)=\left(c_{\xi}^{2}+\frac{k^{2}}{2} s_{\xi}^{2}\right) \sin ^{2} 2 \theta \sin ^{2}\left(\frac{\delta m_{12}^{2} L}{4 E}\right)
$$

where $s_{\xi}=\sin \xi$ and $c_{\xi}=\cos \xi$.

- The bounds on $\sin ^{2} 2 \theta$ can be interpreted as bounds on $\left(c_{\xi}^{2}+\frac{k^{2}}{2} s_{\xi}^{2}\right) \sin ^{2} 2 \theta$.
- From atmospheric neutrinos (de Salas et al. arXiv:2006.1123), $s_{\xi}^{2}\left(1-\frac{k^{2}}{2}\right)<0.027(1 \sigma), 0.037(2 \sigma), 0.048(3 \sigma)$.

Time-dependent CP Violation

- Consider the oscillation of B^{0} mesons into \bar{B}^{0} and vice-versa.
- The weak eigenstates B_{L} and B_{H} are given by linear combinations of the above states as:

$$
\left|B_{L, H}\right\rangle=p\left|B^{0}\right\rangle \pm q|\bar{B}\rangle .
$$

- Let f be a common final state into which B^{0} and \bar{B}^{0} decay.
- The time-dependent asymmetry in the processes $B^{0} \rightarrow f$ and $\bar{B}^{0} \rightarrow f$ is given by

$$
A(t)=\frac{\left|\left\langle f \mid B^{0}(t)\right\rangle\right|^{2}-\left|\left\langle f \mid \bar{B}^{0}(t)\right\rangle\right|^{2}}{\left|\left\langle f \mid B^{0}(t)\right\rangle\right|^{2}+\left|\left\langle f \mid \bar{B}^{0}(t)\right\rangle\right|^{2}} .
$$

CP-Asymmetry in Nambu QM I

- For canonical $\mathrm{QM}, A(t)$ is given by:
$\underbrace{2 S \sin \left(\frac{\Delta m t}{2}\right) \cos \left(\frac{\Delta m t}{2}\right)}_{S \sin (\Delta m t)}-\underbrace{C\left(\cos ^{2}\left(\frac{\Delta m t}{2}\right)-\sin ^{2}\left(\frac{\Delta m t}{2}\right)\right)}_{C \cos (\Delta m t)}$,
where $\Delta m=\left(m_{H}-m_{L}\right)$.
- In Nambu QM, the same quantity becomes:

$$
\frac{2 S \kappa c_{\xi}^{2} \mathrm{cn} \mathrm{sn}-C\left(c_{\xi}^{2} \mathrm{cn}^{2}-\kappa^{2} \mathrm{sn}^{2}\right)}{1-2(S \kappa \mathrm{sn}-(1+C c n)) s_{\xi} c_{\xi} \mathrm{dn}}
$$

- For $k=\xi=0$, we have

$$
s_{\xi}=\sin \xi=0, c_{\xi}=\cos \xi=1, \kappa=\sqrt{1+k^{2} \tan ^{2} \xi}=1
$$

and we get back the canonical QM result.

CP-Asymmetry in Nambu QM II

Blue: Canonical QM, Orange: Nambu QM.

Bounds from $B^{0}-\bar{B}^{0}$ Oscillation at Belle

Figure: Data from Adachi et al., Phys. Rev. Lett. 108, 171802 (2012)

Bounds on k and ξ

- Comparing with the $B^{0}-\bar{B}^{0}$ oscillation data from Belle, the allowable values of k and ξ are as follows:

$$
\begin{aligned}
& 0<k<0.848,0<\xi<0.057(1 \sigma) \\
& 0<k<0.896,0<\xi<0.088(2 \sigma) \\
& 0<k<0.941,0<\xi<0.137(3 \sigma)
\end{aligned}
$$

- They easily satisfy the weaker bounds obtained from atmospheric neutrinos.

Summary

- An understanding of QM in terms of physical principles is yet to be achieved, so the study of its foundations is still active.
- Relaxation of the underlying assumptions of QM and confrontation with experiments could be one way to make progress.
- Nambu QM is a minimalistic yet experimentally testable generalization of QM.
- Particle oscillation data already provide bounds on the deformation parameters of Nambu QM.

Motivation
Background

Thank You!

