Constructing Operator Basis in Supersymmetry

arXiv: 2212.02551 [hep-th], 2305.01736 [hep-th] Antonio, Delgado Adam, Martin
Runqing Wang (speaker)

May 08, 2023

-Standard Model Effective Field Theory (SMEFT)

We should include all terms that respect symmetries of the theory into the Lagrangian.

Dimension-5 operator: the Weinberg operator, violates lepton number
Dimension-6 operators: Warsaw basis

Higher dimensional operators are usually related by different redundancies, e.g. equations of motion, integration by parts, Fierz identities, etc. To find/build the basis of these operators becomes important if we want to put independent operators (give different S-matrix elements) in the Lagrangian.

What happens when we add derivatives?

-EOM and IBP relations

EOM: $\partial^{2} \phi \sim m^{2} \phi, i \gamma^{\mu} \partial_{\mu} \psi \sim m \psi^{\dagger}, \cdots$
IBP: $\mathcal{O}_{1} \sim \mathcal{O}_{2}+\boldsymbol{O}_{3}$
Short conformal characters:

$$
\begin{aligned}
& \bar{\chi}_{(0,0)}=P(\alpha, \beta, D)\left(1-D^{2}\right) \quad P(\alpha, \beta, D)=\left((1-D \alpha \beta)\left(1-\frac{D}{\alpha \beta}\right)\left(1-\frac{D \alpha}{\beta}\right)\left(1-\frac{D \beta}{\alpha}\right)\right)^{-1} \\
& \bar{\chi}_{\left(\frac{1}{2}, 0\right)}=P(\alpha, \beta, D)\left(\left(\alpha+\frac{1}{\alpha}\right)-D\left(\beta+\frac{1}{\beta}\right)\right), \quad \bar{\chi}_{\left(0, \frac{1}{2}\right)}=P(\alpha, \beta, D)\left(\left(\beta+\frac{1}{\beta}\right)-D\left(\alpha+\frac{1}{\alpha}\right)\right) \\
& \mathscr{H}=\int d \mu \frac{1}{P} P E\left[\sum_{i} \phi_{i} \chi_{R, i}\right]+\Delta H \\
& \text { - } d \mu \text { : project out Lorentz scalars } \\
& \text { - } \frac{1}{P} \text { : remove IBP } \\
& \text { - Short conformal characters: remove EOM }
\end{aligned}
$$

EOM in Supersymmetry

For a chiral superfield Φ, equation of motion is given by $\partial_{\alpha}^{2} \Phi \sim m \Phi^{\dagger}$. We can verify this relation by expanding Φ in components, i.e. $\Phi=\phi(y)+\sqrt{2} \theta \psi(y)+\theta \theta F(y)$, where $y^{\mu}=x^{\mu}+i \theta \sigma^{m} \bar{\theta}$, and we get $\partial_{\alpha}^{2} \phi=m \phi, i \sigma_{\alpha \dot{\alpha}}^{\mu} \partial_{\mu} \psi^{\alpha}=m \psi_{\dot{\alpha}}^{\dagger}$.
$\left(\begin{array}{c}\Phi \\ \partial_{\alpha} \Phi \\ \partial_{\dot{\alpha}} \partial_{\alpha} \Phi \\ \partial_{\beta} \partial_{\dot{\alpha}} \partial_{\alpha} \Phi \\ \partial_{\dot{\beta}} \partial_{\beta} \partial_{\dot{\alpha}} \partial_{\alpha} \Phi \\ \cdots\end{array}\right)=\left(\begin{array}{c}\Phi \\ \partial_{\dot{\alpha}} \partial_{\alpha} \Phi \\ \partial_{\dot{\beta}} \partial_{\beta} \partial_{\dot{\alpha}} \partial_{\alpha} \Phi \\ \partial_{\dot{\gamma}} \partial_{\gamma} \partial_{\dot{\beta}} \partial_{\beta} \partial_{\dot{\alpha}} \partial_{\alpha} \Phi \\ \cdots\end{array}\right)+\left(\begin{array}{c}\partial_{\alpha} \Phi \\ \partial_{\beta} \partial_{\dot{\alpha}} \partial_{\alpha} \Phi \\ \partial_{\gamma} \partial_{\dot{\beta}} \partial_{\beta} \partial_{\dot{\alpha}} \partial_{\alpha} \Phi \\ \partial_{\dot{i}} \partial_{\gamma} \partial_{\dot{\beta}} \partial_{\beta} \partial_{\dot{\alpha}} \partial_{\alpha} \Phi \\ \cdots\end{array}\right)$
Bosonic Part

$$
\bar{\chi}_{(0,0)}=P(\alpha, \beta, D)\left(1-D^{2}\right)
$$

$\xrightarrow{\text { SUSY }}$ Fermionic Part

$$
\bar{\chi}_{\left(\frac{1}{2}, 0\right)}=P(\alpha, \beta, D)\left(\left(\alpha+\frac{1}{\alpha}\right)-D\left(\beta+\frac{1}{\beta}\right)\right)
$$

$$
P E\left[\sum_{i} \phi_{i} \chi_{R, i}\right]=P E\left[\Phi \bar{\chi}_{(0,0)}+P \Phi \bar{\chi}_{\left(\frac{1}{2}, 0\right)}\right] \quad \text { P: spurion of super derivative }
$$

IBP in Supersymmetry

-2 Independent IBP Relations

3 different derivatives $\partial_{\mu}, \partial_{\alpha}, \partial_{\dot{\alpha}}$

Only 2 of them are independent!

3 IBP relations

$$
K \sim K^{\prime}+\partial_{\alpha} X^{\alpha}
$$

$$
K \sim K^{\prime}+\partial_{\dot{\alpha}} X^{\dot{\alpha}}
$$

$$
K \sim K^{\prime}+\partial_{\mu} X^{\mu}
$$

$$
K \sim K^{\prime}+\partial_{\alpha}\left(\partial_{\dot{\alpha}} X^{\alpha \dot{\alpha}}\right)+\partial_{\dot{\alpha}}\left(\partial_{\alpha} X^{\alpha \dot{\alpha}}\right)
$$

Still, we have 2 relations and the previous 1/P factor doesn't work here. (P is not a rep here)

It is tempting to simply subtract the number of $X^{\alpha}, X^{\dot{\alpha}}$ to get the number of independent operators, because it seems like that one operator with one fewer derivative provides one IBP relation, and if we get rid of all these operators, our result is free of IBP. However it's incorrect because these IBP relations can be linearly dependent!

-Correction Space

Starting with a space \mathcal{O}, we define the zeroth order equivalence relations on \mathcal{O} as follows:

$$
o_{1} \sim o_{2}+\sum \mathscr{J}_{i} s_{i}, \quad o_{i} \in \mathcal{O}, s_{i} \in S_{i}^{0}
$$

We call \mathcal{S}_{j}^{1} the first order correction space if all elements in \mathcal{S}_{j}^{1} satisfy the following conditions:
$\mathscr{T}_{i j}^{1} s_{j} \neq 0$, and $\mathscr{I}_{i} \mathscr{T}_{i j}^{1} s_{j}=0$, (no sums over i), $\forall s_{j} \in \mathcal{S}_{j}^{1}$.
A space \mathcal{S}_{j}^{n} is called the nth-order correction to \mathcal{O} if there exist maps:
$\mathscr{T}_{i j}^{n}: S_{j}^{n} \rightarrow S_{i}^{(n-1)}$, such that:
\# of independent operators $=$
$\mathscr{T}_{i j}^{n} s_{j} \neq 0$, and $\mathscr{T}_{k i}^{n-1} \mathscr{T}_{i j}^{n} s_{j}=0, \forall s_{j} \in S_{j}^{n}, \forall k$, $\#\{\mathcal{O}\}-\# \sum\left\{\mathcal{S}_{i}^{0}\right\}+\# \sum\left\{\mathcal{S}_{i}^{1}\right\}-\# \sum\left\{\mathcal{S}_{i}^{2}\right\}+\cdots$
and is denoted as $\mathcal{S}_{j}^{n}\left(\left\{\mathcal{S}_{i}^{n-1}\right\} \rightarrow\left\{\mathcal{S}_{i}^{n-2}\right\}\right), n \geq 2$.

-SMEFT Example Revisit

e.g. $\quad \overparen{O}_{i} \sim \widehat{O}_{j}+\sum_{\mu} \bigoplus_{n}^{\mu}, \quad \widehat{O}_{i}, \widehat{O}_{j} \in\{X\}, \sigma_{n}^{\mu} \in\left\{X^{\mu}\right\}$.

If we identify $\mathscr{T}_{11}^{1} \equiv \partial_{\mu}$ and $\mathscr{J}_{1} \equiv \partial_{\nu}$.

Terminates with four total antisymmetric indices in four dimensions.
$\mathscr{J}_{1} \mathscr{T}_{11}^{1} s=\partial_{\mu} \partial_{\nu} X^{[\mu \nu]}=0 \quad X^{[\mu \nu]}$ is the first order correction space!
$\mathscr{T}_{11}^{1} \mathscr{T}_{11}^{2} X^{[\mu \nu \rho]}=\partial_{\mu} \partial_{\nu} X^{[\mu \nu \rho]}=0 \quad X^{[\mu \nu \rho]}$ is the second order correction space!
$\mathscr{T}_{11}^{2} \mathscr{T}_{11}^{3} X^{[\mu \nu \rho \sigma]}=\partial_{\mu} \partial_{\nu} X^{[\mu \nu \rho \sigma]}=0 \quad X^{[\mu \nu \rho \sigma]}$ is the third order correction space!

Diagram:

Order:
1
D
D^{2}
D^{3}
D^{4}
$\sum D^{n} \chi_{X^{\left[\mu_{1} \mu_{2} \cdots \mu_{n}\right]}}=1-D\left(\alpha+\frac{1}{\alpha}\right)\left(\beta+\frac{1}{\beta}\right)+D^{2}\left[\left(1+\alpha^{2}+\frac{1}{\alpha^{2}}\right)+\left(1+\beta^{2}+\frac{1}{\beta^{2}}\right)\right]-D^{3}\left(\alpha+\frac{1}{\alpha}\right)\left(\beta+\frac{1}{\beta}\right)+D^{4}=\frac{1}{P}$
Operator Space - IBP Space $+\quad$ First order correction space - Second order correction space + Third order correction space

-6 Infinite Branches

-Summation

$$
\begin{aligned}
& \text { number }= \\
& =\#\{X\}^{0,0} \\
& -\#\left(\{X\}^{0,1}+\{X\}^{1,0}\right) \\
& +\#\left(\{X\}^{1,2}+\{X\}^{2,1}+\{X\}^{0,2}+\{X\}^{2,0}\right) \\
& -\#\left(\{X\}^{1,3}+\{X\}^{3,1}+\{X\}^{0,3}+\{X\}^{3,0}+\{X\}^{2,2}\right) \\
& +\#\left(\{X\}^{1,4}+\{X\}^{4,1}+\{X\}^{0,4}+\{X\}^{4,0}+\{X\}^{4,2}+\{X\}^{2,4}\right)
\end{aligned}
$$

$\sum P^{p} Q^{q} \chi_{X^{p, q}}$

P,Q represent two super derivatives

 $=1$$-(P x+Q y)$
$+\left(P Q^{2} x+P^{2} Q y+P^{2}\left(x^{2}-1\right)+Q^{2}\left(y^{2}-1\right)\right)$
$-\left(P Q^{3} x y+P^{3} Q x y+P^{3}\left(x^{3}-2 x\right)+Q^{3}\left(y^{3}-2 y\right)+P^{2} Q^{2}\right)$
$\left.\ldots \quad Q^{3} x y+P^{3} Q x y+P^{3}\left(x^{3}-2 x\right)+Q^{3}\left(y^{2}-2 y\right)+P^{2} Q^{2}\right)$

This becomes the 1/P factor in supersymmetry, and
when we put this into Hilbert series, it will automatically remove all IBP redundancies.

$$
\mathscr{H}=\int d \mu \frac{1}{P_{\text {new }}} P E\left[\sum_{i} \phi_{i} \chi_{R, i}\right]+\Delta H
$$

In practical use, we will truncate this infinite series.

Conclusion

- Short conformal characters remove all EOM relations
- Correction space
- 1/P factor removes all IBP relations
- 6 infinite branches
- Gauge interactions
- Superconformal approach?

