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—Standard Model Effective Field Theory (SMEFT)

We should include all terms that respect symmetries of the theory into the Lagrangian.


Dimension-5 operator: the Weinberg operator, violates lepton number

Dimension-6 operators: Warsaw basis

Higher dimensional operators are usually related by different redundancies, e.g. equations of 
motion, integration by parts, Fierz identities, etc. To find/build the basis of these operators 
becomes important if we want to put independent operators (give different S-matrix elements) in 
the Lagrangian.



—EOM and IBP relations

χ̄(0,0) = P(α, β, D)(1 − D2)

χ̄( 1
2 ,0) = P(α, β, D)((α +

1
α

) − D(β +
1
β

)), χ̄(0, 1
2 ) = P(α, β, D)((β +

1
β

) − D(α +
1
α

))

Short conformal characters:

P(α, β, D) = ((1 − Dαβ)(1 −
D
αβ

)(1 −
Dα
β

)(1 −
Dβ
α

))
−1

EOM:                         IBP:   ∂2ϕ ∼ m2ϕ, iγμ∂μψ ∼ mψ†, ⋯ 𝒪1 ∼ 𝒪2 + ∂𝒪3

What happens when we add derivatives?

Operators less than dimension 5.

ℋ = ∫ dμ
1
P

PE[∑
i

ϕi χR,i]+ΔH
• : project out Lorentz scalars


• : remove IBP


• Short conformal characters: remove EOM

dμ
1
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EOM in Supersymmetry
For a chiral superfield , equation of motion is given by . We can verify this relation by 
expanding  in components, i.e. , where , and we get 

 .

Φ ∂2
αΦ ∼ mΦ†

Φ Φ = ϕ(y) + 2θψ(y) + θθF(y) yμ = xμ + iθσmθ
∂2

αϕ = mϕ, iσμ
α ·α∂μψα = mψ†

·α
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∂ ·γ∂γ∂ ·β∂β∂ ·α∂αΦ

⋯

∂αΦ
∂β∂ ·α∂αΦ

∂γ∂ ·β∂β∂ ·α∂αΦ
∂ ·τ∂γ∂ ·β∂β∂ ·α∂αΦ

⋯

+

Bosonic Part Fermionic Part

χ̄(0,0) = P(α, β, D)(1 − D2) χ̄( 1
2 ,0) = P(α, β, D)((α +

1
α

) − D(β +
1
β

))Free of EOM

Indices are chosen to be 
symmetric combinations

PE[∑
i

ϕi χR,i] = PE[Φχ̄(0,0) + PΦχ̄( 1
2 ,0)] P: spurion of super derivative
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IBP in Supersymmetry
—2 Independent IBP Relations

3 different derivatives ∂μ, ∂α, ∂ ·α 3 IBP relations

K ∼ K′ + ∂αXα

K ∼ K′ + ∂ ·αX ·α

K ∼ K′ + ∂μXμ

Only 2 of them are independent! K ∼ K′ + ∂α(∂ ·αXα ·α) + ∂ ·α(∂αXα ·α)

Still, we have 2 relations and the previous 1/P factor doesn’t work here. (P is not a rep here)

It is tempting to simply subtract the number of  to get the number of independent operators, 

because it seems like that one operator with one fewer derivative provides one IBP relation, and if we get 
rid of all these operators, our result is free of IBP. However it’s incorrect because these IBP relations can 
be linearly dependent!

Xα, X ·α



—Correction Space

We call  the first order correction space if all elements in  satisfy the following conditions:


.

𝒮1
j 𝒮1

j

𝒯1
ijsj ≠ 0, and ℐi𝒯1

ijsj = 0, (no sums over i), ∀sj ∈ 𝒮1
j

Starting with a space , we define the zeroth order equivalence relations on  as follows:





𝒪 𝒪

o1 ∼ o2 + ∑ ℐisi, oi ∈ 𝒪, si ∈ S0
i .

A space  is called the nth-order correction to  if there exist maps:

 


, such that:


, 


and is denoted as .

𝒮n
j 𝒪

𝒯n
ij : Sn

j → S(n−1)
i

𝒯n
ijsj ≠ 0, and 𝒯n−1

ki 𝒯n
ijsj = 0,∀sj ∈ Sn

j , ∀k

𝒮n
j ({𝒮n−1

i } → {𝒮n−2
i }), n ≥ 2

# of independent operators =

#{𝒪} − #∑ {𝒮0
i } + #∑ {𝒮1

i } − #∑ {𝒮2
i } + ⋯



e.g.   .𝒪i ∼ 𝒪j + ∑
n

∂μ𝒪μ
n, 𝒪i, 𝒪j ∈ {X}, 𝒪μ

n ∈ {Xμ}

 is the first order correction space!X[μν]ℐ1𝒯1
11s = ∂μ∂νX[μν] = 0

If we identify  and .𝒯1
11 ≡ ∂μ ℐ1 ≡ ∂ν

 𝒯1
11𝒯

2
11X

[μνρ] = ∂μ∂νX[μνρ] = 0  is the second order correction space!X[μνρ]

 𝒯2
11𝒯

3
11X

[μνρσ] = ∂μ∂νX[μνρσ] = 0  is the third order correction space!X[μνρσ]
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Diagram:

Order:

—SMEFT Example Revisit
Terminates with four total 
antisymmetric indices in 
four dimensions.

∑ DnχX[μ1μ2⋯μn] = 1 − D(α +
1
α

)(β +
1
β

) + D2[(1 + α2 +
1
α2

) + (1 + β2 +
1
β2

)] − D3(α +
1
α

)(β +
1
β

) + D4 =
1
P
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—6 Infinite Branches
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number =
= #{X}0,0

−#({X}0,1 + {X}1,0)
+#({X}1,2 + {X}2,1 + {X}0,2 + {X}2,0)
−#({X}1,3 + {X}3,1 + {X}0,3 + {X}3,0 + {X}2,2)
⋯

(ln)
(α1α2⋅⋅⋅αn)(τβ1β2⋅⋅⋅βn)·α X ·α

(α1α2⋅⋅⋅αn)
= (an∂ ·α∂Z + bn∂Z∂ ·α)ϵ(Zα1α2⋅⋅⋅αn)(τβ1β2⋅⋅⋅βn)X ·α

(α1α2⋅⋅⋅αn)
an = (−1)n 2

(n + 1)!
, bn = (−1)n 2

(n + 2)n!



—Summation

number =
= #{X}0,0

−#({X}0,1 + {X}1,0)
+#({X}1,2 + {X}2,1 + {X}0,2 + {X}2,0)
−#({X}1,3 + {X}3,1 + {X}0,3 + {X}3,0 + {X}2,2)
+#({X}1,4 + {X}4,1 + {X}0,4 + {X}4,0 + {X}4,2 + {X}2,4)
⋯

∑ PpQq χXp,q

= 1
−(Px + Qy)
+(PQ2x + P2Qy + P2(x2 − 1) + Q2(y2 − 1))
−(PQ3xy + P3Qxy + P3(x3 − 2x) + Q3(y3 − 2y) + P2Q2)
⋯

This becomes the 1/P factor in supersymmetry, and 
when we put this into Hilbert series, it will automatically 

remove all IBP redundancies.

P,Q represent two super derivatives

ℋ = ∫ dμ
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In practical use, we will truncate this infinite series.



Conclusion

• Short conformal characters remove all EOM relations


• Correction space


• 1/P factor removes all IBP relations


• 6 infinite branches


• Gauge interactions


• Superconformal approach?
Thank you!


