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Studying Hadrons

e A major goal of high energy physics: deciphering hadrons.
e Some properties are calculated from lattice; the rest
measured experimentally.

A standard approach: Lightcone QCD.

Hilbert space of Hadrons: Fock space of valence quarks
with fractional longitudinal momentum.

Going to lower dimensions simplifies things too.
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For simplicity, I focus on mesons in this talk.

[$har = / dr d 5(1 -z — §) $(z) [z, 7).

We use the following template function for mesons:

The variation parameter: a.

Similar calculation can be done for baryons.
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e The proposal works perfectly!

e Where did this template function come from?
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e Hadron = A parton immersed in a sea of other partons.

e Particles of different momenta: numerous interactions.

e Bulk properties - derived from a probability distribution.
e Just like classic stat. mech. systems!

e Probabilities from an emergent min. free energy principle.
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Whar = / dz dg 8(1 — = — g) $(x) |2,5) = p1 = / dal () 2|}z,

Free Energy = free valence quark kinetic energy
— entanglement of all pairs of partons.

2

m, [ ‘ . 1 1 T 3 ‘
Fo = Pil / dz|p(x)|? (1 + = ;’1:) B In (/ d;1:|(,’>(:17)|2“>

oF, ‘ m,;z = N =
3o = 0= |¢(x)]* = <7_21> {r(l - 1)} :

e Our ansatz minimizes Hadrons’ Renyi free energy!
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THANK YOU!
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Back Up

Understanding Confinement

e Formal proof of the mass gap.

e When does it take place? Effect of 67

e What is a good order parameter?

e Is the phase transition first order or second order?
e Analytic understanding of hadron properties.

e Hadron properties: PDF, mass, spin, dipole moments, form
factors



Back Up

Homage to Lightcone

e See hep-ph/9705477 for further details.

e Three dimensional surface in spacetime formed by a plane
wave front advancing with the velocity of light.

e Maximal number of “kinematical” Poincare generators.

e Hadrons Hilbert space decomposes into constituent partons
Fock space.

e The vacuum is simple. No state with zero momentum and
arbitrary number of particles.

e The wavefunction is frame-independent: no need to boost
the result when expressed in terms of x;.

e PT is the Hamiltonian. Hadrons are eigenstates of the
confining theory Hamiltonian.

e Hamiltonian does not include a square root.
e P~, M, P, and spin are invariants of the Hamiltonian.

2/9
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In Praise of Lower Dimensions

e No spins; no transverse momentum; gauge fields do not
propagate.

e Running is suppressed: polynomial (as oppose to
logarithmic) /A suppression.

Gauss law: linear potential between sources of charge.
QED;41 (Schwinger) and QCD;4; ('t Hooft) are examples.
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Schwinger Model & Bosonization

S = [d%x (19 — 0., +ip(@, + 8)y.)

i 1
2m (x-y)-ie

<P YiG) >=-

S=[d* =(3,9)" orp=2e0, ¢.=2(pT2)

€

<:elh+®) 1 o—id (). S =
e+i(x-y)

L ip().
P_(x) & }Zne e :

PP o g (eT¥D et W) = —Licos ()i Wy o - Lising@: §iyhd, o 2 (9,9)°

S =[x (FE* + = ¢F +—~(0,9)°)

E=
s=2fdxx ((9,9)° - S9?)

T

e
_zd)

With fermion mass, we get an interaction whose potential can
be calculated via Bethe-Salpeter.
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't Hooft Model

In the large-N limit, only planar diagrams with no fermion
loops matter.

2
2 -1 b +k, 1
X [Mf +2o,0 5 1p | —le‘] ff‘-“ﬁ”k-f D gk, dk_ (15)

wp_,1) =f\b(p .p_.ndp,

Ko(x) = (*Jf**N(x) Pf dy

,)2
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Renyi vs. Tsallis

Usually used with o > 0.

e Converge to von Neumann entropy at o — 1.

Non-negative (for discrete distributions).

Subadditivity and strong subadditivity not followed
(except in special cases).

e Various applications in: complex system, blackhole physics,
astrophysics, nuclear theory, condensed matter.
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(Quantum) Information and Statistical Mechanics

e Assume we are not given the pdf of a random variable z,
rather the expected value of some functions of them f;(x).

e What is the expected value of an arbitrary function g(z)?

e The MaxEnt principle is not an application of laws of
physics, rather a method of reasoning with no arbitrary
assumptions beyond what we know.

e Any suitable measure of uncertainty works.

e When measure of uncertainty is the Shannon entropy, we
find exponential distributions.

e Jaynes argues this approach applies thanks to typicality
and sharply-peaked distributions; its prerequisite is having a
many-body system.
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A Baryon Wavefunction in 1+1D

Start with N = 3. Hilbert space decomposed into ¢qq Fock

spaces
1

) = Z Pi,ji0i+jt+i,1[i50)
ijk=0
Two-partons’ reduced density matrix:

p= ZMPz,l,
!

1-1 1-1
_ k .. .
P21 = Z Z pz‘,j,lp{jl5i+j,17165+3,1—l‘ZJ><U‘7
ij=07;=0
1-1 .
— 2 _ Pigl
i,j=0 :

p2, is a fixed momentum 2-parton reduced density matrix.

8/9
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A Baryon Wavefunction in 1+1D

For a fixed momentum [, it is a pure state:

pos = [P
1-1

W) = N pigadiria-ilis).

ij=0

Similar to the meson case now. Tracing one remaining quark

out:
p1 = Z |Pi1—i—1,

3

“li) -

We now calculate the Renyi entropy of all p; matrices.
Adding to this the kinetic energy of the remaining two quarks,
we find the fixed momentum biparton free energy.
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Baryon’s Biparton Renyi Free Energy

Summing all these fixed-l free energies, we get the full Biparton
Renyi Energy of the system.

oF, AN =
W202>|¢(:1:,z)|2: (ZE;’) [xz(l—x—z)] .

The PDF is obtained by integrating over one of the fractional
momentum variables:

mg a1 i 1
fq(x) =3 (ﬂ) /0 dz (xz(1—z—2))T-=.

We will use this as the template function of a variation method
for baryons.



Back Up

Hamiltonian in Higher Dims.

e Gauge bosons are dynamic.
e There is transverse momentum.

P

1 N — m? 4 (iV.)? s "
3 /dm d*x) (’1’4 7*%114 — A (1VL)2AI‘

+

. [, b T A+

+ ﬂ /dz’dQXL cabccadeAbAcAduAeu

+

/ do=dx, 17 Ty ——s By T,

(i0%)
+ 5 / dz~ dzxmw/'T"A""é (TP Abyy,)

2 2 (K +m2) 2 .
M"= Z/[dwl] [d kh] Z z |¢n (i, kis)|” + (interactions),
n a=1 a

e _/ld, LN 51 [4(z, k. )|* + (interactions)
LY 167r3'(727) oo

= / = l) /dz‘bLz/) (z,b1) (— Vbl) 9 (z, b, ) + (interactions)
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The Variation Parameter

0
) §
s 4 Schwinger
_6f 't Hooft (V=3), Baryon
— 't Hooft (N=3), Meson
—8k
J
~1gLH : . :
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mq/ 8
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Pheno Applications and Future Directions

e Calculating PDFs and masses for other representations,
more flavors, higher dimensions, ...

e Calculating fragmentation functions.

e Form factors relevant for flavor physics.
e Jet properties.

e Dipole moments.

e Confining dark sectors: abundance and detection.
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