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Background
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Kerr Spacetime

• An axial symmetric & stationary solution for the 

Einstein Field Equations (EFE). 

• A candidate to describe rotating astrophysical 

objects in General relativity. For example a 

rotating blackhole of Mass M and Angular 

momentum J.

2

𝑑𝑠2 = 1 −
2𝑀𝑟

Σ
𝑑𝑡2 +

4𝑀𝑎𝑟sin2𝜃

Σ
𝑑𝑡𝑑𝜑 −

Σ

△
𝑑𝑟2

−Σ𝑑𝜃2 − sin2𝜃 𝑟2 + 𝑎2 +
2𝑀𝑎2𝑟sin2𝜃

Σ
𝑑𝜑2

𝑎 =
𝐽

𝑀
Σ = 𝑟2 + 𝑎2cos2𝜃 △= 𝑟2 − 2𝑀𝑟 + 𝑎2.

Kerr Metric in Boyer-Lindquist Coordinates



Perturbed Kerr: Path I 

• If we want to study first order perturbation of the Einstein 

Field equation(EFE). We can try the convenient method of 

linearizing the full Metric 𝑔𝜇𝜈 as following: 

𝑔𝜇𝜈=𝑔𝜇𝜈
𝑘𝑒𝑟𝑟+𝑔𝜇𝜈

(1)

• Then try to Use the background EFF to obtain the 

linearized one?! 

𝐺𝜇𝜈
(1)

≡ 𝑅𝜇𝜈
(1)

−
1

2
𝑔𝜇𝜈
𝐵 𝑅(1) = 𝜅𝑇𝜇𝜈

(1)

• Won’t be fruitful due to lack of gauge decoupled 

the Background and linearized FE.
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Perturbed Kerr: Path II

• Perturbing Kerr spacetime is conducted

within the Newman–Penrose (NP) formalism.

• Instead of starting with linearized metric, we

linearized the Weyl-Scalars.

• In NP, Weyl-Tensor get projected around four null

directions 𝑙𝑎, 𝑛𝑎, 𝑚𝑎, ഥ𝑚𝑎 which are known as the

Tetrads.

Ψ0: = 𝐶𝑎𝑏𝑐𝑑𝑙
𝑎𝑚𝑏𝑙𝑐𝑚𝑑

Ψ1: = 𝐶𝑎𝑏𝑐𝑑𝑙
𝑎𝑛𝑏𝑙𝑐𝑚𝑑

Ψ2: = 𝐶𝑎𝑏𝑐𝑑𝑙
𝑎𝑚𝑏 ഥ𝑚𝑐𝑛𝑑

Ψ3: = 𝐶𝑎𝑏𝑐𝑑𝑙
𝑎𝑛𝑏 ഥ𝑚𝑐𝑛𝑑

Ψ4: = 𝐶𝑎𝑏𝑐𝑑𝑛
𝑎 ഥ𝑚𝑏𝑛𝑐 ഥ𝑚𝑑

The resultant quantities are five-complex scalar field 

known as the Weyl-Scalars Ψ𝑛. 

4



Perturbed Kerr: Path II

• Perturbing those Weyl-scalars are equivalent to perturbing vacuum spacetime.

• They all obey, a single master equation; the famous Teukolsky equation

(Teukolsky,1973).
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❖ 𝜓𝑠 is related Ψ𝑛 through the Teukolsky-decoupling Transformation.

❖ Scalar, Electromagtatic and Gravitonal Pertubation are represented by 𝑠 = 0,±1,±2 respectively. 

❖ 𝑇 is a constructed from the perturber stress energy-tensor. 
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Problem Statement
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What is a the “Kerr Reconstruction Problem”? 

• We need a way to reconstruct the metric 

itself 𝑔𝜇𝜈
(1)

from the weyl-scalars.

• This could be accomplished by applying the 

Chrzanowski,  Cohen, Kegeles, and Wald 

(CCKW) procedure. In what is known as the 

Metric Reconstruction problem (Wald, 

1973). 
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Appendix: CCKW Procedure

1. Obtain The conjugate PDE operator to the 

Master Teukolsky one.

2. Solve  the conjugate Homogenous PDE 

equation with dependent variable knows as 

Hertz Potentials Ψ𝐻𝑒𝑟𝑡𝑧

3. From the algebraic properties of two 

conjugated PDEs we will be allowed to flip the 

linearized operator for Einstein Field equation 

inside out 

Accordingly, we can reconstruct the Metric 

from those Auxiliary Hertz Potentials 𝛹𝐻𝑒𝑟𝑡𝑧 .



Boyer-Lindquist Chart & Kinnersley Tetard are ill 
defined Near the Horizon!

𝑑𝑠2 = 1 −
2𝑀𝑟
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Kerr Metric in Boyer-Lindquist Coordinates

• The Boyer-Lindquist chart fail to describe the

metric at two points of the radial coordinate

defining the Outer and Inner Horizon of the

Kerr blackhole.

△= 0 → 𝑟± = 𝑀 ± 𝑀2 − 𝑎2

• Kinnersley Tetrad is ill-defined at the Horizon.

𝑙𝜇 = 𝑟2 + 𝑎2 /△, 1,0, 𝑎/△

𝑛𝜇 = 𝑟2 + 𝑎2,−△, 0, 𝑎 /(2Σ)

𝑚𝜇 = [𝑖𝑎sin𝜃, 0,1, 𝑖/sin𝜃]/( 2(𝑟 + 𝑖𝑎cos𝜃))
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How to overcome this problem?

• Usually, a null rotation on the tetrad will be used to impose a regularity condition to 

regularize the behavior of the 𝜓𝑠 for example (Van de Meent & Shah, 2015).

• We propose to fully reformulate the problem from scratch in a Horizon penetrating 

coordinates and tetrad.  
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Motivation
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I. Redo the Metric Reconstruction in a Horizon 
regular settings.

• Metric reconstruction problem has been addressed for both circularly (Shah, 2012) and elliptically 

(Van de Meent & Shah, 2015) rotating perturber in BL.

• Still, it is not a bad idea to revisit the reconstruction problem in a fully regular null coordinates & 

tetrad across the horizon (ingoing Eddington Finkelstein (IEF) & Modified Kinnersley Tetrad. 
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II. Near Horizon and Near Mouth Perturbation 
should be asymptotic.  

𝑑𝑠2 = 1 −
2𝑀𝑟
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Kerr-Like Metric in Boyer-Lindquist Coordinates

• For 𝛾 = 0 this metric describe Kerr-Blackhole. 

While 𝛾 ≠ 0 will describe Kerr-like Wormhole 

(Bueno,2018).

• At the limit 𝛾 → 0 the perturbation near the horizon 

should be asymptotic to the one near to the 

wormhole mouth

• This motivate a variation of parameter mapping 

between BH and WH perturbations similar to the 

one done in Schwarzschild case(Dai, 2019).
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III.  Studying the Behavior of Radial-Teukolsky 
equation under Transformation.

• The Teukolsky equation is separable in the BL coordinate. It

reduces to two ODEs: Radial and Angular in nature using the

following ansatz (Teukolsky, 1973).

𝜓𝑠 = 𝑒−𝑖𝜔𝑡𝑅𝑠 𝑟 𝑆𝑠 𝜃 𝑒𝑖𝑚𝜑

• The ODE govern the Radial part is shown below

Δ−𝑠
𝑑
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𝑑𝑅

𝑑𝑟
+

𝐾2 − 2𝑖𝑠(𝑟 − 𝑀)𝐾

Δ
+ 4𝑖𝑠𝜔𝑟 − 𝜆 𝑅 = 0

𝐾 ≡ 𝑟2 + 𝑎2 𝜔 − 𝑎𝑚 and 𝜆 ≡ 𝐴 + 𝑎2𝜔2 − 2𝑎𝑚𝜔

• Given that this ODE is a confluent Heun ODE with 3 singular 

points, one of them is irregular. It is solved using the MST

solution (Mano, 1996). 

• We are curious to how transformation to ingoing Eddington

Finkelstein (IEF) coordinate can change the singular

structure of the radial equation (Campanelli,2001).

𝑑𝑟 = 𝑑𝑟
𝑑𝜃 = 𝑑𝜃

𝑑 ǁ𝑡 = 𝑑𝑡 +
𝑟2 + 𝑎2

△
𝑑𝑟

𝑑 ෨𝜙 = 𝑑𝜙 +
𝑎

△
𝑑𝑟
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Metric perturbation for a circularly orbiting 
perturber around a black hole in Kerr 

spacetime.

14



I. Master Perturbation Equation in IEF

• We obtained the Master Perturbation equation in IEF coordinates while using modified version of 

Kinnersley Tetrad. 

• The separability of this PDE and decouplability of the Radial and Angular ODEs was preserved.

• The Angular equation was form-invariant, as a consequence of missing any mixing angular terms. 

However for the same reason, the Radial equation changed.  

Δ
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𝑑𝑟2
+ 2(𝑖𝑎𝑚 − (1 + 𝑠)(𝑟 − 𝑀) − 2𝑖𝑀𝑟𝜔)
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+ − ҧ𝜆 + 𝜔2(Δ + 4𝑀𝑟) + 2𝑖𝑀(𝑠 + 1)𝜔 + 2𝑖𝑟𝑠𝜔 𝑅 = 0
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II. Radial Equation and Boundary Conditions

• Still, the Radial equation had the same singular structure that make it a Confluent Heun 

ODE. Hence, there is an effective single radial transformation equivalent to the BL-IEF 

transformation (Ronveaux, 2007). 

• In IEF, the Asymptotes of the Radial ODE, near the Horizon and in the asymptotic flat 

region; satisfy the physical boundary condition without any need for regularity conditions.

• For the case of circularly orbiting perturber, we solved the inhomogeneous Radial 

equation using green method by utilizing the adjoint property of the decoupling operator 

for the linearized Einstein field for the Weyl scalars.
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III. CCKW and Metric Reconstruction and Completion

• The Hertz-Weyl equations persevered their angular and radial signatures as well. Moreover 

the Angular one was form invariant in the outgoing radiation gauge.

• Algebraizing this equation was manageable after utilizing that also Hertz potential satisfy the 

master perturbation equation (shah, 2015).

• We also obtained regular missing perturbation parts due to perturbating the Angular 

Momentum and Mass of the Blackhole.
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Conclusion and Discussion

• We have constructed the Metric in terms of the Radial and Angular solution for the case of Circularly 

orbiting perturber close to the Horizon. This still valid beyond the Horizon although we are not sure 

what might be the possible theoretical outcomes of working the construction in region between two 

horizons.

• In principle the Master Teukolsky perturbation equation has the same analytical structure in both of BL 

and IEF coordinates which makes the MST solution for the radial part valid also for the latter.

• There was no need for any regularization condition on the Horizon to make the radial part satisfy the 

physical boundary conditions there.
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Questions?



Thank You!


