What UV Evolution Can Tell Us About The Dark Sector

Aidan Reilly & Natalia Toro

Outline

- Introduce the models we analyze
- Why we care about UV evolution
- Where do the theories become non-perturbative & what does it imply
- Recap & concluding remarks

Outline

- Introduce the models we analyze
- Why we care about UV evolution
- Where do the theories become non-perturbative & what does it imply
- Recap & concluding remarks

• New dark $U(1)_D$ gauge sector, mediated by a massive dark photon A'

• New dark $U(1)_D$ gauge sector, mediated by a massive dark photon A'

• A' kinetically mixes with the standard model hypercharge:

$$\mathcal{L} = \frac{\epsilon}{2\cos(\theta_W)} F'_{\mu\nu} B^{\mu\nu} + \frac{1}{2} m_{A'} A'_{\mu} A'^{\mu}$$

- New dark $U(1)_D$ gauge sector, mediated by a massive dark photon A'
- A' kinetically mixes with the standard model hypercharge:

• Natural if there is a heavy link field charged under both

$$A'_{\mu} \sim \sim \sim B_{\mu} \longrightarrow A'_{\mu} \sim \sim \sim B_{\mu}$$

- New dark $U(1)_D$ gauge sector, mediated by a massive dark photon A'
- A' kinetically mixes with the standard model hypercharge:

• Natural if there is a heavy link field charged under both

• Fermionic DM with coupling e_D to A'

- New dark $U(1)_D$ gauge sector, mediated by a massive dark photon A'
- A' kinetically mixes with the standard model hypercharge:

• Natural if there is a heavy link field charged under both

$$A'_{\mu} \sim \sim \sim B_{\mu} \longrightarrow A'_{\mu} \sim \sim \sim B_{\mu}$$

- Fermionic DM with coupling e_D to A'
- Higgs field with coupling $e_D Q_{\phi}$

• Dark gauge coupling: $\alpha_D = \frac{e_D^2}{4\pi}$

• Dark gauge coupling: $\alpha_D = \frac{e_D^2}{4\pi}$

• Dark gauge coupling: $\alpha_D = \frac{e_D^2}{4\pi}$

• Dark gauge coupling: $\alpha_D = \frac{e_D^2}{4\pi}$

• Dark gauge coupling: $\alpha_D = \frac{e_D^2}{4\pi}$

Outline

- Introduce the models we analyze
- Why we care about UV evolution
- Where do the theories become non-perturbative & what does it imply
- Recap & concluding remarks

Why Do We Care About α_D ?

Why Do We Care About α_D ?

- Larger α_D is harder to detect
- Want to probe α_D as large as allowed by theory (common benchmark $\alpha_D = 0.5$)

Why Do We Care About α_D ?

- Larger α_D is harder to detect
- Want to probe α_D as large as allowed by theory (common benchmark $\alpha_D = 0.5$)

- The combination $\alpha_D \epsilon^2$ is set by thermal freezeout
- Many experiments scale with only ϵ

• Size of λ affects DM and DH phenomenology via the Higgs to dark photon mass ratio: $\lambda \propto g_{\phi}^2 \left(\frac{m_h}{m_{A'}}\right)^2 \qquad m_{A'} = 3m_{\chi}$

- Size of λ affects DM and DH phenomenology via the Higgs to dark photon mass ratio: $\lambda \propto g_{\phi}^2 \left(\frac{m_h}{m_{A'}}\right)^2 \qquad m_{A'} = 3m_{\chi}$
- Phenomenologically distinct regions

- Size of λ affects DM and DH phenomenology via the Higgs to dark photon mass ratio: $\lambda \propto g_{\phi}^2 \left(\frac{m_h}{m_{A'}}\right)^2 \qquad m_{A'} = 3m_{\chi}$
- Phenomenologically distinct regions

- Size of λ affects DM and DH phenomenology via the Higgs to dark photon mass ratio: $\lambda \propto g_{\phi}^2 \left(\frac{m_h}{m_{\Delta'}}\right)^2 \qquad m_{A'} = 3m_{\chi}$
- Phenomenologically distinct regions

- Size of λ affects DM and DH phenomenology via the Higgs to dark photon mass ratio: $\lambda \propto g_{\phi}^2 \left(\frac{m_h}{m_{A'}}\right)^2 \qquad m_{A'} = 3m_{\chi}$
- Phenomenologically distinct regions

 $m_{\gamma} < m_h < 2m_{\gamma}$

II. Visible (light)

 $2m_{\chi} \leq m_h$

III. Invisible (heavy)

• Indicates the need for a UV completion

- Indicates the need for a UV completion
- Gauge pole: $U(1) \rightarrow SU(N)$ at μ^*

- Indicates the need for a UV completion
- Gauge pole: $U(1) \rightarrow SU(N)$ at μ^*
- SM neutral, difficult to see

- Indicates the need for a UV completion
- Gauge pole: $U(1) \rightarrow SU(N)$ at μ^*
- SM neutral, difficult to see
- Link fields connect this to the SM!

- Indicates the need for a UV completion
- Gauge pole: $U(1) \rightarrow SU(N)$ at μ^*
- SM neutral, difficult to see
- Link fields connect this to the SM!
 - <u>Upper bound</u>: $\epsilon \propto \frac{\mu^*}{M_{\psi}} \approx O(0.1)$

- Indicates the need for a UV completion
- Gauge pole: $U(1) \rightarrow SU(N)$ at μ^*
- SM neutral, difficult to see
- Link fields connect this to the SM!
 - <u>Upper bound:</u> $\epsilon \propto \frac{\mu^*}{M_{\psi}} \approx O(0.1)$
 - <u>Lower bound:</u> Collider constraints ~100's of GeV

- Indicates the need for a UV completion
- Gauge pole: $U(1) \rightarrow SU(N)$ at μ^*
- SM neutral, difficult to see
- Link fields connect this to the SM!
 - <u>Upper bound:</u> $\epsilon \propto \frac{\mu^*}{M_{\psi}} \approx O(0.1)$
 - <u>Lower bound:</u> Collider constraints ~100's of GeV
- Upper bound on α_D

• λ pole at much lower energies

- λ pole at much lower energies
- Connection to link fields less direct

- λ pole at much lower energies
- Connection to link fields less direct
- (1) Add particles to slow running (2) make composite

What about λ ?

- λ pole at much lower energies
- Connection to link fields less direct
- (1) Add particles to slow running (2) make composite
- New charged matter → lower gauge pole & NA scale → lower link field mass

What about λ ?

- λ pole at much lower energies
- Connection to link fields less direct
- (1) Add particles to slow running (2) make composite
- New charged matter → lower gauge pole & NA scale → lower link field mass
- Assume the same factor of 10 ratio between M_{ψ} and the lambda pole
 - Current constraints suggest poles ≥ 50 GeV

Outline

- Introduce the models we analyze
- Why we care about UV evolution
- Where do the theories become non-perturbative & what does it imply
- Recap & concluding remarks

Where are the poles?

- Depends on the charge of the Higgs field: Q_{ϕ}
 - Larger charge = lower poles
- 2 common fermionic DM models

Where are the poles?

- Depends on the charge of the Higgs field: Q_{ϕ}
 - Larger charge = lower poles
- 2 common fermionic DM models

$$Q_{\phi} = 1 \rightarrow \underline{\text{Pseudo-Dirac DM}}$$

$$j^{\mu} = i\bar{\chi}_1 \gamma^{\mu} \chi_2$$

$$Q_{\phi} = 2 \rightarrow \underline{\text{Majorana DM}}$$

$$j^{\mu} = \frac{1}{2} \bar{\chi} \gamma^{\mu} \gamma^5 \chi$$

Where are the poles?

- Not much preference for region II over region III because λ running driven by α_D
- Tightest perturbativity constraint on α_D comes from λ pole not its own landau pole

What Do These Constrained Values of α_D Mean for Experiment?

What Do These Constrained Values of α_D Mean for Experiment?

• Landau poles motivate lower α_D for Majorana

What Do These Constrained Values of α_D Mean for Experiment?

- Landau poles motivate lower α_D for Majorana
- Future experiments probe whole parameter space

Outline

- Introduce the models we analyze
- Why we care about UV evolution
- Where do the theories become non-perturbative & what does it imply
- Recap & concluding remarks

- Novel UV completions are required at relatively low energies
- New dominant effect from Higgs Landau pole driven by α_D
 - No preference for light dark Higgs
- Need for link fields turns this effect into a constraint & discovery opportunity

- Novel UV completions are required at relatively low energies
- New dominant effect from Higgs Landau pole driven by α_D

0.0

- No preference for light dark Higgs
- Need for link fields turns this effect into a constraint & discovery

opportunity

 α_D

0.5

.75

Pseudo-Dirac

Majorana

- Novel UV completions are required at relatively low energies
- New dominant effect from Higgs Landau pole driven by α_D

0.0

- No preference for light dark Higgs
- Need for link fields turns this effect into a constraint & discovery

opportunity

DM
Experiment
Future

DM
Experiment
Future

DM
Experiment
Future

DM
Experiment
Future

Constraints

Perturbativity +
Link Field
Constraints

.25

Pseudo-Dirac

 α_D

0.5

Majorana

THANK YOU!