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* Fermionic DM with coupling ep to A’
* Higgs tield with coupling ep Q¢
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Why Do We Care About ap?

* Larger ap 1s harder to detect

* Want to probe ap as large as allowed by theory (common benchmark

* The combination ape? is set by thermal freezeout ep e

* Many experiments scale with only €

E+
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Why Do We Care About A?

* Size of A affects DM and DH phenomenology via the Higgs
to dark photon mass ratio:

mA’

* Phenomenologically distinct regions

mp <m,

1. Unviable

m, <my < 2m,

1. Visible (light)

2m, < my

III. Invisible (heavy)
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Why Do We Care about the Landau Poles?

* Indicates the need for a UV completion
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What about A?

* A pole at much lower energies
* Connection to link fields less direct

* (1) Add particles to slow running (2) make
composite

* New charged matter = lower gauge pole
& NA scale = lower link field mass

 Assume the same factor of 10 ratio
between My, and the lambda pole

 Current constraints suggest poles = 50 GeV
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* Depends on the charge of the Higgs field: Q4

* Larger charge = lower poles

e 2 common fermionic DM models

Qs =1 = Pseudo-Dirac DM Qp = 2 = Majorana DM
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* Not much preference for region II over region III because A running driven by ap
* Tightest perturbativity constraint on a@p comes from A pole not its own landau pole
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for Experiment?

10°

10°

107

108

10-10

* Landau poles motivate lower ap for Majorana

* Future experiments probe whole parameter space
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* Novel UV completions are required at relatively low energies

* New dominant effect from Higgs Landau pole driven by ap
* No preference for light dark Higgs

* Need for link fields turns this effect into a constraint & discovery
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