Dynamics of Dark Matter Misalignment Through the Higgs Portal

arXiv: 2211.09132 [hep-ph]

Mudit Rai¹

University of Pittsburgh

Collaborators: Brian Batell, Akshay Ghalsasi.

Motivation

- Ultra-light scalar dark matter $(10^{-10} \, \text{eV} 100 \, \text{keV})$, generically produced via the misalignment mechanism, is a theoretically well-motivated and phenomenologically distinctive scenario.
- A minimal model realization consists of a scalar field coupled through the super-renormalizabe Higgs portal [1].
- The cosmology of this scenario is rich and distinctive, involving the dynamical misalignment of the scalar field during the radiation era through two competing mechanisms: thermal misalignment and VEV misalignment.
- Under certain conditions, the DM relic abundance is insensitive to initial conditions and thus controlled by the DM mass and Higgs portal coupling. This leads to a relic density target that can be compared with experimental tests.

Higgs portal model

Light scalar ϕ with small coupling to Higgs(h) in thermal bath:

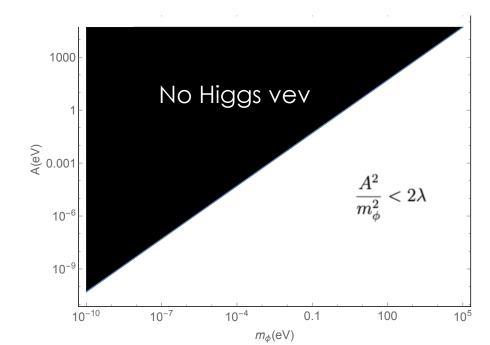
$$V = -\frac{1}{2} \,\mu^2 \,h^2 + \frac{1}{4} \lambda \,h^4 + \frac{1}{2} m_\phi^2 \phi^2 + \frac{1}{2} A \,\phi \,h^2$$

Since we are always in regime where $A^2 \lesssim m_\phi^2 \ll \lambda v^2$

$$heta \sim rac{A}{2\lambda v} \simeq rac{Av}{M_h^2}, \qquad M_h^2 \simeq 2\lambda v^2 + rac{A^2}{2\lambda}, \qquad M_\phi^2 \simeq m_\phi^2 - rac{A^2}{2\lambda}.$$

Scalar fields vev's:

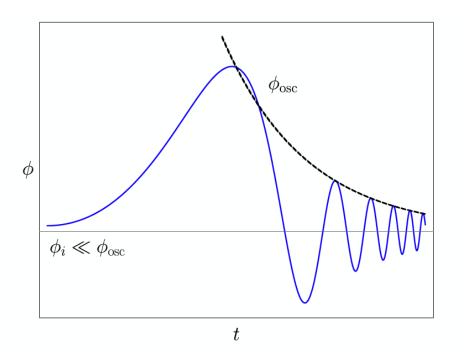
$$v^2 = \frac{\mu^2}{\lambda - A^2/2m_\phi^2}, \qquad \phi_0 = -\frac{Av^2}{2m_\phi^2}$$

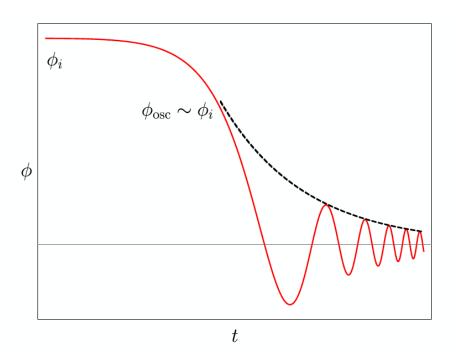


Overview of cosmological setup

- lacktriangle Our study starts in the radiation era at high temperatures, $T \gg v$.
- The feeble coupling of the scalar ϕ to the Higgs [1] leads to non-trivial dynamical evolution of during the radiation era through two effects:
 - Thermal misalignment ϕ_T : The scalar experiences a finite temperature potential and is driven towards its high temperature minimum at large field values.
 - lacktriangle VEV misalignment ϕ_V : During the electroweak phase transition the Higgs VEV turns on and induces a shift in the VEV [2].

Thermal Misalignment vs Standard Misalignment





Effective potential

■ There are three contributions to the effective potential:

$$V_{
m eff}(\phi,h,T) = V_0(\phi,h) + V_{
m CW}(\phi,h) + V_T(\phi,h,T)$$
Tree-level Coleman-Weinberg Finite-Temperature

- The first term is the usual zero temperature potential.
- In our study, the CW potential only effects the Higgs transition slightly and does not have a major impact on our final results, thus ignored.
- ullet ϕ is not in thermal equilibrium, but experiences a thermal potential due to its coupling to SM via Higgs, all of which is in thermal equilibrium.

1-loop finite temperature effective potential

For our model, the thermal potential is given as:

$$V_T(\phi,h,T) \supset rac{1}{2\pi^2} T^4 J_B \left[rac{m_h^2(\phi,h,T)}{T^2}
ight] + rac{3}{2\pi^2} T^4 J_B \left[rac{m_\chi^2(\phi,h,T)}{T^2}
ight] + \ \dots$$

where,
$$J_{B,F}(w^2) = \int_0^\infty \! dx \, x^2 \, \log \left[1 \mp \exp \left(- \sqrt{x^2 + w^2} \right) \, \right]$$

lacktriangle The ϕ -dependent masses of the Higgs and Nambu-Goldstone bosons are

$$m_{0,h}^2(\phi,h) = -\mu^2 + 3\lambda h^2 + A\phi,$$

$$m_{0,\chi}^2(\phi,h) = -\mu^2 + \lambda h^2 + A \phi,$$

Higgs field

Dimensionless variables:

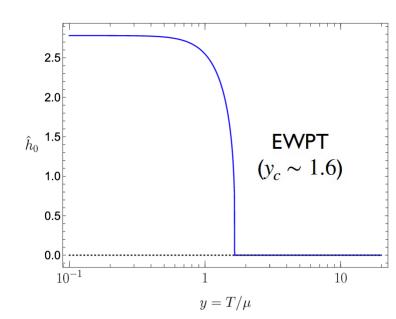
$$y=rac{T}{\mu},\quad \hat{\phi}=rac{\phi}{M_{
m pl}},\quad \hat{h}=rac{h}{\mu},\quad \kappa=rac{m_{\phi}M_{
m pl}}{\mu^2},\quad eta=rac{AM_{pl}}{\mu^2}$$

■ Higgs field tracks its minima, which can be derived by minimizing the potential, $\frac{\partial V}{\partial h} = 0$:

$$0 = \lambda \hat{h}^2 - (1 - \beta \hat{\phi}) + \frac{y^2}{2\pi^2} \left(6\lambda (J_B'[\eta_h] + J_B'[\eta_\chi]) + g^2 \left(J_B'[\eta_{W_T}] + J_B'[\eta_{W_L}] \right) + (g^2 + g'^2) J_B'[\eta_{Z_T}] \right)$$

$$+rac{y^2}{2\pi^2}\left(rac{\partial\eta_{Z_L}}{\partial z}J_B'[\eta_{Z_L}]+rac{\partial\eta_{A_L}}{\partial z}J_B'[\eta_{A_L}]
ight)-rac{y^2}{2\pi^2}\left(12y_t^2J_F'[\eta_t]
ight)$$

where, $\eta_i = m_i^2(\phi, h, T)/T^2$



Evolution of Scalar Dark Matter

EOM for ϕ :

$$\ddot{\phi} + 3H\dot{\phi} + \frac{\partial V_{eff}}{\partial \phi} = 0$$

In terms of dimensionless quantities and temperature:

$$\hat{\phi}'' + \frac{1}{\gamma^2 y^6} \left[\kappa^2 \hat{\phi} + \frac{\beta \hat{h}^2}{2} + \frac{\beta y^2}{2\pi^2} \left(J_B'[\eta_h] + 3J_B'[\eta_\chi] \right) \right] = 0.$$

We solve it numerically by inserting the Higgs solution.

Initial Conditions

- We consider two sets of initial conditions as our benchmark models:
- For a long enough period of inflation and a low enough Hubble, $H_I < v$, the effective temperature experienced by the scalar field is $T \sim H_I$.
- Since $H_I \ll v$, the Higgs is close to its vev and the true minima of ϕ is approximately given by it's 0 T value :

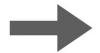
$$\phi[y_i] = \phi_0 = \frac{\beta M_{pl}}{\beta^2 - 2\lambda \kappa^2}$$

 $\phi_i=0$, serves as a representative example of the general situation where ϕ_i is vastly different than ϕ_0 , and Higgs VEV misalignment controls the final relic density for low masses.

Onset of oscillations

As the universe expands, the Hubble parameter decreases until it eventually falls below the effective mass, marking the onset of scalar oscillations ϕ ,

$$[3H(y_{\rm osc})]^2 = m_{\phi}^2(y_{\rm osc}) \simeq m_{\phi}^2$$



$$[3H(y_{
m osc})]^2=m_\phi^2(y_{
m osc})\simeq m_\phi^2$$

$$y_{
m osc}=\frac{T_{
m osc}}{\mu}=\sqrt{\frac{\kappa}{3\gamma}}$$

Region 1 (small β , large κ , high T):

$$\kappa > 3\gamma$$
, $y_{osc} \gg 1$

Region 2 (small κ , low T):

$$\kappa < 3\gamma$$
, $y_{osc} < 1$

Approximate DM density: Region I

Region I:

$$(\kappa \gtrsim 10^3, \ m_{\phi} \gtrsim 3 \times 10^{-3} \text{eV})$$

■ In this region, the thermal misalignment dominates over the kick due to Higgs transition, hence we drop the Higgs dependent term to get an approximate form of the equation:

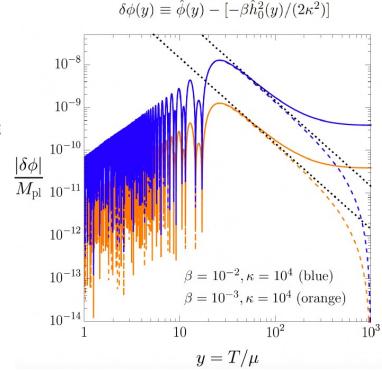
$$\hat{\phi}''(y) + \frac{\beta}{2\pi^2 \gamma^2 y^4} \left(J_B'[\eta_h] + 3(J_B'[\eta_\chi]) = 0 \right)$$

This yields:

$$\hat{\phi}(y) = -\frac{\beta}{6\pi^2\gamma^2y^2} + \phi_i \implies \hat{\phi}(y_{osc}) = -\frac{\beta}{2\pi^2\gamma\kappa} + \phi_i$$

■ The DM density can be given by a simple approx. form:

$$\Omega_{DM} = \frac{\rho(T_0)}{\rho_{tot}} = \frac{\rho(y_{osc})}{\rho_{tot}} \left(\frac{y_0}{y_{osc}}\right)^3 \left(\frac{g_{*,0}}{g_{*,osc}}\right)$$
$$= 0.26 \left(\frac{\beta}{0.05}\right)^2 \left(\frac{1000}{\kappa}\right)^{3/2}$$



Approximate DM density: Region 2

- Region 2: $\kappa < 1, m_{\phi} < 10^{-5} eV$
- The thermal misalignment is negligible, thus we get:

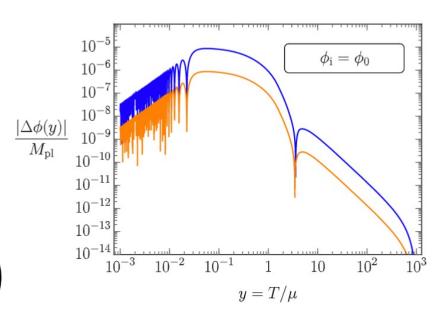
$$\phi''(y) + \frac{1}{\gamma^2 y^6} \left(\kappa^2 \hat{\phi} \right) = 0,$$

Solution:

$$\phi(y) = \frac{1}{y^4} \frac{\beta}{24\gamma^2 \lambda} + \phi_0$$

The DM density is given by:

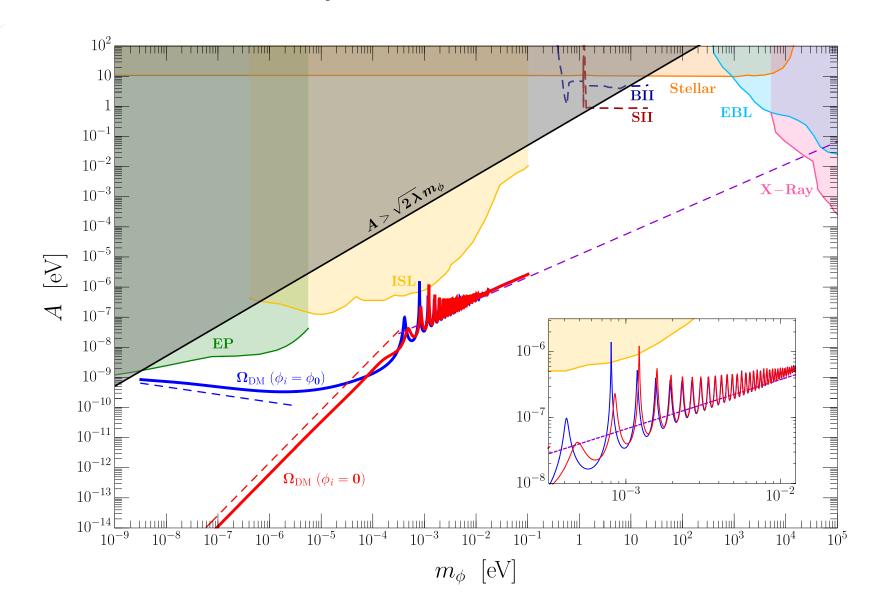
$$\Omega_{DM} = \frac{\rho(T_0)}{\rho_{tot}} = \frac{\rho(y_{osc})}{\rho_{tot}} \left(\frac{y_0}{y_{osc}}\right)^3 \left(\frac{g_{*,0}}{g_{*,osc}}\right)$$
$$= 0.26 \left(\frac{\beta}{2 \times 10^{-4}}\right)^2 \left(\frac{\kappa}{10^{-3}}\right)^{1/4}$$



Experimental and observational probes

- Equivalence principle / inverse square law tests [Piazza, Pospelov, 2010; Graham, Kaplan, Mardon, Rajendran, Terrano 2016]
- Stellar cooling [Hardy, Lasenby, 2016]
- Extragalactic background light and X-rays [Fradette, Pospelov, Pradler, Ritz, 2018; Cadamuro, Redondo, 2011; Flacke, Frugiuele, Fuchs, Gupta, Perez, 2017; Essig, Kuflik, McDermott, Volansky, Zurek, 2011]
- Resonant absorption in molecules [Arvanitaki, McDermott, Van Tilburg 2017]

Relic Density Plot



Conclusions

- Ultralight bosons represent a well-motivated and phenomenologically distinctive class of DM models.
- We have studied the cosmology of a light scalar coupled through the superrenormalizable Higgs portal.
- The cosmology of this scenario is rich and distinctive, involving the dynamical misalignment of the scalar field during the radiation era through two competing mechanisms: thermal misalignment and VEV misalignment.
- Under certain conditions, a relic density target can be defined which is not insensitive to initial conditions.
- New ideas are needed to probe much of the cosmologically interesting regions of parameter space.

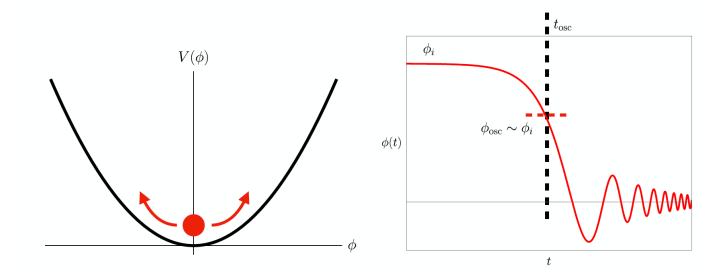
THANK YOU!

BACKUP Slides

Standard Misalignment mechanism

$$\ddot{\phi} + 3H\dot{\phi} + m_{\phi}^2\phi = 0$$

- During early times (high T) the scalar is held up by Hubble friction and remains fixed at its initial value.
- As the universe cools, H < m. This signals the onset of scalar oscillations.
- At late times, the scalar oscillates about its minimum and is diluted due to Hubble expansion.



Standard Misalignment mechanism

The energy density redshifts as matter

$$\rho_{\phi} = \frac{1}{2} m_{\phi}^2 \langle \phi^2(t) \rangle \sim a(t)^{-3} \sim t^{-3/2} \sim T^3$$

The relic abundance at late times will depend on the initial value of field via the oscillation field value:

$$\Omega_{\phi}|_{0} = \frac{\rho_{\phi,0}}{\rho_{c,0}} \simeq \frac{\frac{1}{2} m_{\phi}^{2} \phi_{\text{osc}}^{2} (T_{0}/T_{\text{osc}})^{3} (g_{*S}^{0}/g_{*S}^{\text{osc}})}{\rho_{c,0}}$$

$$\approx 0.2 \left(\frac{m_{\phi}}{10^{-11} \,\text{eV}}\right)^{1/2} \left(\frac{\phi_{i}/M_{\text{pl}}}{10^{-4}}\right)^{2}$$

Mass eigenstates

Mass eigenvalues :

$$M_{h,\phi}^2 = rac{1}{2} \left[2 \lambda v^2 + m_\phi^2 \pm \sqrt{(2 \lambda v^2 - m_\phi^2)^2 + 4 A^2 v^2}
ight]$$

Thermal potential: Basics

- Thermal potentials can be understood from the phase space distributions.
- Consider a field ψ with mass m_{ψ} in thermal bath, then it's free energy density $(\mu=0)$ gives the thermodynamic effective potential (: bosons, + : fermion)

$$V_{th}(\chi) = \mathcal{F} = -P$$

$$V_{th}(\chi) = \frac{(-1)^n g}{6\pi^2} T^4 \int_0^\infty dx \frac{x^4}{\sqrt{x^2 + m_{\psi}^2(\chi)/T^2}} \{exp[(\sqrt{x^2 + m_{\psi}^2(\chi)/T^2}] \pm 1\}^{-1}$$
$$= \frac{(-1)^n g}{2\pi^2} T^4 \int_0^\infty dx \, x^2 \log[1 \pm e^{-\sqrt{x^2 + m_{\psi}^2(\chi)/T^2}}]$$

x = p/T

Where the Phase space and pressure is given as :

$$f(p) = \{exp[(\sqrt{p^2 + m_{\psi}^2(\chi)} - \mu)/T] \pm 1\}^{-1} \qquad P = \frac{g_{\psi}}{2\pi^2} \int_0^{\infty} dp \, \frac{p^4}{3E(p)} f(p) dp \, dp \, \frac{p^4}{2\pi^2} f(p) dp$$

Finite temperature J functions

At high temperature, one can expand them as:

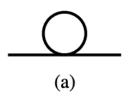
$$J_B(y^2) \approx J_B^{\text{high}-T}(y^2) = -\frac{\pi^4}{45} + \frac{\pi^2}{12}y^2 - \frac{\pi}{6}y^3 - \frac{1}{32}y^4 \log\left(\frac{y^2}{a_b}\right)$$

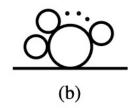
$$J_F(y^2) \approx J_F^{\text{high}-T}(y^2) = \frac{7\pi^4}{360} - \frac{\pi^2}{24}y^2 - \frac{1}{32}y^4 \log\left(\frac{y^2}{a_f}\right) \qquad \text{for } |y^2| \ll 1$$

- ► At low temperature, they are Boltzmann suppressed, thus the analysis reverts to the Tree level potential.
- We account for the hard thermal loops by using the Truncated dressing, where the masses are replaced by

$$m^2 = m_{tree}^2 + \Pi(T), \ \Pi(T) \propto T^2$$

Hard Thermal loops basics





$$V = \frac{-\mu^2 \phi^2}{2} + \frac{\lambda \phi^4}{4}$$

1-loop mass correction λT^2

higher-loop daisy correction
$$\frac{\lambda^n T^{2n-1}}{u^{2n-3}}$$

Large ratios of T/ μ have to be resumed ($\mu^2 \sim \lambda T^2$), which can be done by replacing the tree mass by

$$m^2(\phi) = m_{\mathrm{tree}}^2(\phi) + \Pi(\phi, T)$$

For scalars, Π gives the leading contribution in T to the one-loop thermal mass, and is obtained by differentiating V_{th} with respect to field:

$$\Pi \sim \lambda T^2 + \dots$$

This includes the hard thermal loops and daisy contributions to all orders.

Potential including thermal effects

Thus, by resuming the thermal mass in the arguments of the thermal potential, ("Truncated Full Dressing"), we get:

$$\hat{V} = -\frac{1}{2}\hat{h}^{2}(1 - \beta\hat{\phi}) + \frac{1}{4}\lambda\hat{h}^{4} + \frac{1}{2}\kappa^{2}\hat{\phi}^{2}
+ \frac{y^{4}}{2\pi^{2}}(J_{B}[\eta_{h}] + 3J_{B}[\eta_{\chi}] + 4J_{B}[\eta_{W_{T}}] + 2J_{B}[\eta_{Z_{T}}] + 2J_{B}[\eta_{W_{L}}] + J_{B}[\eta_{Z_{L}}] + J_{B}[\eta_{A_{L}}] - 12J_{F}[\eta_{t}])$$

For Higgs and the Goldstones, the correction is given by

$$\begin{split} \eta_h &= \frac{1}{y^2} \left(3\lambda \hat{h}^2 - (1 - \beta \hat{\phi}) + \frac{y^2}{4} \left(2\lambda + y_t^2 + \frac{3}{4} g^2 + \frac{1}{4} g'^2 \right) \right) \\ \eta_\chi &= \frac{1}{y^2} \left(\lambda \hat{h}^2 - (1 - \beta \hat{\phi}) + \frac{y^2}{4} \left(2\lambda + y_t^2 + \frac{3}{4} g^2 + \frac{1}{4} g'^2 \right) \right), \end{split} \\ y &= \frac{T}{\mu}, \quad \hat{\phi} = \frac{\phi}{M_{\rm pl}}, \quad \hat{h} = \frac{h}{\mu}, \quad \kappa = \frac{m_{\phi} M_{\rm pl}}{\mu^2}, \quad \beta = \frac{A M_{pl}}{\mu^2}, \quad \beta = \frac{A M_{pl}}{\mu^2}, \end{split}$$

For Longitudinal vector boson modes, it is given as (gauge basis):

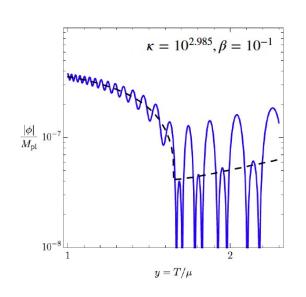
$$\Pi_{GB}^{L}(0) = \frac{11}{6}T^2 \operatorname{diag}(g^2, g^2, g^2, g'^2)$$

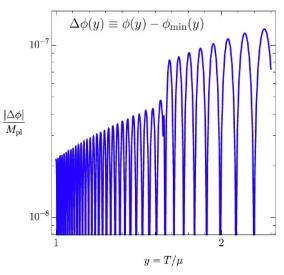
 Contributions to Fermions (no zero modes, thus no IR divergence in propagators) and transverse vector boson modes (gauge symmetry) are suppressed.

Intermediate Region

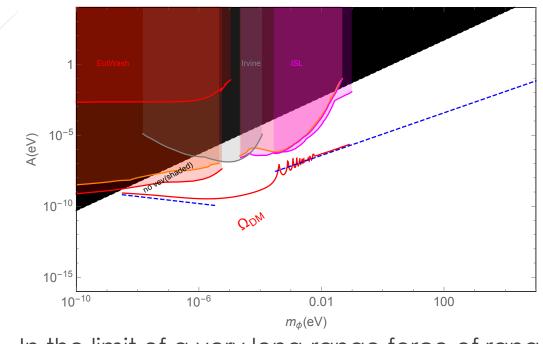
- In Region the scalar evolution is the result of a competition between thermal misalignment and VEV misalignment.
- Initially, thermal misalignment occurs at high temperatures and oscillations begin before the EWPT
- At the EWPT, the Higgs field rapidly moves from the origin towards $h \to v$, simultaneously inducing a shift in the ϕ VEV towards its zero-temperature value.
- This acts as a step-like forcing term in the scalar equation of motion, causing a suppression or enhancement in the oscillation amplitude

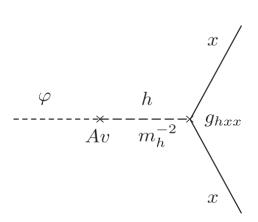
• In the example at right, the scalar field is near its oscillation maximum as the shift in the ϕ VEV occurs.





Fifth force experiments Constraints





- In the limit of a very long-range force of range $\sim m_\phi^{-1}$, bounds are derived from post-Newtonian tests of relativity.
- The universal coupling turns out to be :

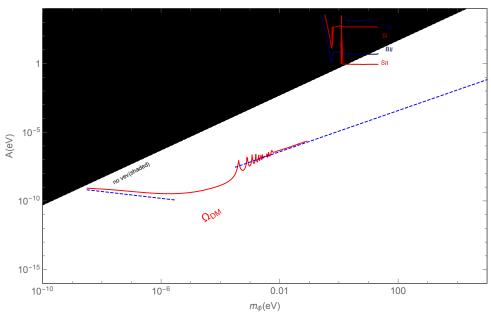
$$\alpha = g_{hNN} \frac{\sqrt{2}M_P}{m_{\text{nuc}}} \frac{Av}{m_h^2}$$

$$\simeq 10^{-3} \left(\frac{m_h}{115 \,\text{GeV}}\right)^{-2} \frac{A}{10^{-8} \,\text{eV}}.$$

$$A = \frac{\beta \mu^2}{M_{pl}}$$

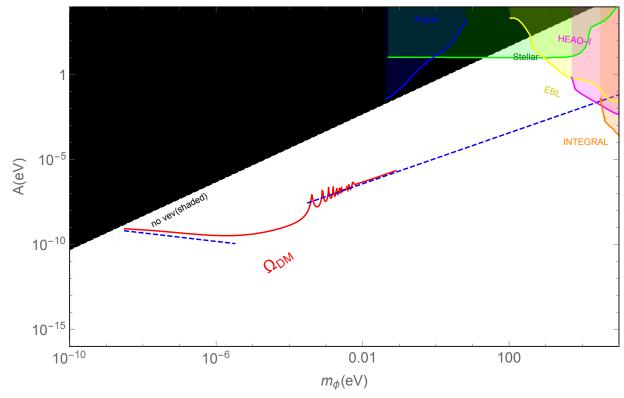
$$V(r) = -\frac{Gm^2}{r}(1 + \alpha^2 e^{-m_{\phi}r})$$

Resonant absorption in gas chamber



- Bosonic dark matter (DM) detectors based on resonant absorption onto a gas of small polyatomic molecules.
- The excited molecules emit the absorbed energy into fluorescence photons that are picked up by sensitive photodetectors with low dark count rates.
- DM masses between 0.2 eV and 20 eV are targeted, with Bulk and Stack configurations being focused on.

Stellar Cooling bounds



- Stellar cooling constraints relies upon the draining and cooldown of stars due to production of ultralight particles (like ϕ) in stars.
- We consider the bounds coming from red giants (RG) and horizontal branch (HB) stars cooling.

2 body photon decay

- Extragalactic bounds
 - Photons emitted from very late decays that do not lie in ultraviolet range, can be observed today as a distortion of the diffuse extragalactic background light (EBL).
 - Together these bounds cover the wavelength range between 0.1 and 1000 μ m, that is roughly the mass range between 0.1 eV and 1 keV.
- Two body photon decays $(\phi \rightarrow \gamma \gamma)$
 - ► HEAO-1: Data is from observations of 3-50 keV photons made with the A2 High-Energy Detector on HEAO-1. Other datasets from the experiment are significantly weaker than those from the INTEGRAL experiment.
 - INTEGRAL: Data is from observations of 20 keV to 2 MeV photons.