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Motivation

= Ultra-light scalar dark matter (1071%eV - 100 keV ), generically produced
via the misalignment mechanism, is a theoretically well-motivated and
phenomenologically distinctive scenario.

» A minimal model realization consists of a scalar field coupled through the
super-renormalizabe Higgs portal [1].

®» The cosmology of this scenario is rich and distinctive, involving the
dynamical misalignment of the scalar field during the radiation era through
two competing mechanisms: thermal misalignment and VEV misalignment.

» Under certain conditions, the DM relic abundance is insensitive to inifial
conditions and thus controlled by the DM mass and Higgs portal coupling.
This leads to a relic density target that can be compared with experimental

tests.

[1] Pospelov et al, Phys.Rev.D82:043533,2010[2]



Higgs portal model

» | ght scalar ¢ with small coupling to Higgs(h) in thermal bath:
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Overview of cosmological sefup

» QOur study starts in the radiation era at high temperatures, T > wv.

» The feeble coupling of the scalar ¢ to the Higgs [1] leads to non-
trivial dynamical evolution of during the radiation era through two

effects:

» Thermal misalignment ¢, : The scalar experiences a finite temperature

potential and is driven towards its high temperature minimum at large

field values.

» VEV misalignment ¢, : During the electroweak phase transition the
Higgs VEV turns on and induces a shift in the VEV [2].

[1]Pospelov et al, Phys.Rev.D82:043533,2010
[2] Arkani-Hamed et al, Phys. Rev. D 104, 095014




Thermal Misalignment vs Standard
Misalignment
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Effective potential

There are three contributions to the effective potential:

‘/;ﬂ(¢7 h’a T) — %(¢7 h’) + VCW(¢) h) I VT(¢7 h7 T)

Coleman-

Tree-level d _—
Weinberg Finite-Temperature

The first term is the usual zero temperature potential.

In our study, the CW potential only effects the Higgs transition slightly
and does not have a major impact on our final results, thus ignored.

¢ is not in thermal equilibrium, but experiences a thermal potential
due to its coupling to SM via Higgs, all of which is in thermal
equilibrium.



1-loop finite temperature effective
potential

» For our model, the thermal potential is given as:

1
VT(¢7 h'7 T) =) 2_71_2T4JB
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where,  Jpr(w?) = / dz z* log [1 F exp (—x/xQ - w2) ]
0

» The ¢-dependent masses of the Higgs and Nambu-Goldstone
bosons are

m (6, h) = —i2 +3AR2 + Ag,
m(2),x(¢a h’) = _:u’2 +)‘h2 +A¢a




Higgs field
®» Dimensionless variables:
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» Higgs field tracks its minima, which can be derived by minimizing the
potential, Z—Z =0:
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Evolution of Scalar Dark Matter

» FoM for ¢ :
OVery

0¢

®» |n ferms of dimensionless quantities and temperature:

b+ 3Ho+ 0

K¢+ =+ 55 (Jplm] +3J5[md) | =0.

» We solve it numerically by inserting the Higgs solution.



Initial Conditions

» \We consider two sefts of initial conditions as our benchmark models :

= [For along enough period of inflation and a low enough Hubble, H; < v, the
effective temperature experienced by the scalar field is T ~ H;.

» Since H; K v, the Higgs is close to its vev and the true minima of ¢ is
approximately given by it's O T value :

BM,
Bl = b0 = Z7

®» ¢, =0, serves as a representative example of the general situation where ¢; is
vastly different than ¢, , and Higgs VEV misalignment conftrols the final relic

density for low masses.



Onset of oscillations

®» As the universe expands, the Hubble parameter decreases until it
eventually falls below the effective mass, marking the onset of scalar
oscillations ¢,

J K
[3H(y030)]2 = m?b(yosc) = mi » Yosc = 7 — _

» Region 1 (small B, large k, high T ):
K> 3Y, Vosc > 1
» Region 2 (small k , low T ):

K<3Y,Vosc <1




Approximate DM density : Region |

= Regionl:
(k Z 103, mg 2 3 x 1073eV)

® |n this region, the thermal misalignment dominates over the kick due to Higgs fransition,
hence we drop the Higgs dependent term to get an approximate form of the equation:

¢"(y) + 222yt (JB[m] + 3(Jp[ny) = 0.
= This yields :
. i X
) = Tom2 e T i W (Yosc) = _275’)% + ¢

» The DM density can be given by a simple approx. form:
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Approximate DM density: Region 2

» Region?2:k <1,my < 107%eV

» The thermal misalignment is negligible, thus we get .

» Solution:

8'0) + =55 (w0) =0,

o(y) = y

» The DM density is given by :
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Experimental and observational probes

» Equivalence principle / inverse square law tests [Piazza, Pospelov, 2010; Graham,
Kaplan, Mardon, Rajendran, Terrano 2016]

» Stellar cooling [Hardy, Lasenby, 2016]

» Extragalactic background light and X-rays [Fradette, Pospelov, Pradler, Ritz, 2018;
Cadamuro, Redondo, 2011; Flacke, Frugiuele, Fuchs, Gupta, Perez, 2017; Essig, Kuflik, McDermott,

Volansky, Zurek, 2011]

®» Resonant absorption in molecules [Arvanitaki, McDermott, Van Tilburg 2017]
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Conclusions

» Ultralight bosons represent a well-motivated and phenomenologically
distinctive class of DM models.

» We have studied the cosmology of a light scalar coupled through the super-
renormalizable Higgs portal.

®» The cosmology of this scenario is rich and distinctive, involving the dynamical
misalignment of the scalar field during the radiation era through two
competing mechanisms: thermal misalignment and VEV misalignment.

» Under certain conditions, a relic density target can be defined which is not
insensitive to initial conditions.

» New ideas are needed to probe much of the cosmologically interesting
regions of parameter space.
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Standard Misalignment mechanism

¢ +3Hp+mip=0
» During early times (high T) the scalar is held up by Hubble friction and
remains fixed at its inifial value.
» As the universe cools, H < m. This signals the onset of scalar oscillations.

» At |late times, the scalar oscillates about its minimum and is diluted due to
Hubble expansion.




Standard Misalignment mechanism

®» The energy density redshifts as matter

ps = s ($(1)) ~ a(t) ™ ~ 177 ~ T

» The relic abundance at late times will depend on the initial value of field
via the oscillation field value:
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Mass eigenstates

» Mass eigenvalues :

M,f’d, = % [2/\212 +mj + \/(2/\'02 —m3)? + 4A2fu2J




Thermal potential : Basics

®» Thermal potentials can be understood from the phase space distributions.

= Consider a field ¢ with mass my, in thermal bath, then it's free energy
density(u = 0) gives the thermodynamic effective potential ( - : bosons, + :

fermion)
Vin(x) =F =—-P
_1 n (o] 4

Vin() = 221 [ de e feapl(yfa + i (077 £ 1)

™ 0 22 +m? (x)/T?

x=7p/T
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» Where the Phase space and pressure is given Qs .
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Finite tfemperature J functions

» At high temperature, one can expand them as :

4 2

i s s s 1 Y
Tolu?) ~ TET ) = =+ Tov? - 0 = gputlog (L)

i T 71'2 1 2
Tr(y?) ~ Jpg T (y?) = 360~ 22Y ~ 3aV 1o (yf> for |y?| < 1

» At low temperature, they are Boltzmann suppressed, thus the analysis
reverts to the Tree level potential.

» We account for the hard thermal loops by using the Truncated dressing,
where the masses are replaced by

m? =m? .., + (T, I(T) oc T?

tree




Hard Thermal loops basics
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1-loop mass correction higher-loop daisy correction
ATZ ATLTZTL—l
Mzn—3

» | arge ratios of T /u have to be resumed (u?~AT?), which can be done by
replacing the tfree mass by

2 (¢) mtree (¢) + H(¢’ T),

» [or scalars, Il gives the leading contribution in T to the one-loop thermal
mass, and is obtained by differentiating V,;, with respect to field:

I~ M2 +

» This includes the hard thermal loops and daisy contributions to all orders.



Potential including thermal effects

» Thus, by resuming the thermal mass in the arguments of the thermal potential,
(“Truncated Full Dressing”), we get:
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» [For Higgs and the Goldstones, the correction is given by
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» [For Longitudinal vector boson modes, it is given as(gauge basis):

11 . 2
HéB(O) - €T2 dlag(g2agzagzag, )

» Conftributions to Fermions(no zero modes, thus no IR divergence in propagators)
and transverse vector boson modes(gauge symmetry) are suppressed.




Intermediate Region

° In RegionDthe scalar evolution is the result of a competition between thermal
misalignment and VEV misalighment.

e Initially, thermal misalignment occurs at high temperatures and oscillations begin before the
EWPT

e At the EWPT, the Higgs field rapidly moves from the origin towards 47 — v, simultaneously
inducing a shift in the ¢ VEV towards its zero-temperature value.

* This acts as a step-like forcing term in the scalar equation of motion, causing a suppression or
enhancement in the oscillation amplitude

x = 102985, /3I= 107! Ap(y) = ¢(y) — min(y)
I 1 107+ .
* In the example at right, " ‘ Mn ﬂ ﬂ ﬂ [\
the scalar field is near its : :
oscillation maximum as % a5e ; 'fl—f' W
the shift in the ¢) VEV -1~
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Fifth force experiments Constraints
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® |n the limit of a very long-range force of range ~ m(;l, bounds are derived
from post-Newtonian tests of relaftivity.
2
= The universal coupling furns out fo be : V(r) = _am (1 +a?e™e)
r
o = ﬁMPﬂ ﬁ 2
= GhNN M mi A= L
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[1]Pospelov et al, Phys.Rev.D82:043533,2010




Resonant absorption in gas chamber
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= Bosonic dark matter (DM) detectors based on resonant absorption onto @
gas of small polyatomic molecules.

» The excited molecules emit the absorbed energy into fluorescence
photons that are picked up by sensitive photodetectors with low dark

count rates.

» DM masses between 0.2 eV and 20 eV are targeted, with Bulk and Stack
configurations being focused on.

Arvanitaki et al [https://arxiv.org/pdf/1709.05354.pdf]



Stellar Cooling bounds
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» Stellar cooling constraints relies upon the draining and cooldown of stars
due to production of ultralight particles (like ¢) in stars.

» We consider the bounds coming from red giants (RG) and horizontal
branch (HB) stars cooling.

Edward Hardy et al[arXiv:1611.05852 [hep-ph]]




2 body photon decay

» Exfragalactic bounds

» Photons emitted from very late decays that do not lie in ultraviolet range, can be
observed today as a distortion of the diffuse extragalactic background light

(EBL).

» Together these bounds cover the wavelength range between 0.1 and 1000 um,
that is roughly the mass range between 0.1 eV and 1 keV.

= Two body photon decays(¢ — yy)

» HEAO-1 : Datais from observations of 3-50 keV photons made with the A2 High-
Energy Detector on HEAO-1 . Other datasets from the experiment are
significantly weaker than those from the INTEGRAL experiment.

» INTEGRAL : Data is from observations of 20 keV to 2 MeV photons.

Thomas Flacke et al(https://arxiv.org/pdf/1610.02025.pdf)
Rouven Essig et al(https://arxiv.org/pdf/1309.4091.pdf)



