Gravitational wave and parity-odd signals of massive gauge boson at the Cosmological collider

Xuce Niu
Phenomenology 2023
5/8/2023
JCAP02(2023)013 \& arXiv 2211.14324
with Moinul Hossain Rahat, Karthik Srinivasan, and Wei Xue
Institute for
Fundamental Theory
UNIVERSITY of FLORIDA

Selling points and motivations

- How to recognize the presence of heavy $(m \sim O(H))$ particles during inflation?
- Conventional Approach: Cosmological Colliders

Three-point correlation scalar perturbation functions oscillate with the "squeezed shape". Frequency is related to the mass. ${ }^{[1]}$

- Current study: Gravitational wave interferometers as particle detectors
- Motivations: CMB constrains and more: $f_{N L} \sim O$ (1) SPHEREX in next year!

Parity-Violation signals ${ }^{[2]}$ BOSS
[1] arXiv 0911.3380 X.Chen, Y.Wang. 1109.0292 D.Baumann, D.Green. 2004.02887 Y.Wang, Z.Xianyu. 1508.08043 N.Arkani-Hamed, J. Maldacena
[2] arXiv 2206.03625 J. Hou, Z. Slepian, R.N. Cahn. 2206.04227 Oliver H.E. Philcox

Massive gauge boson production

- $\mathcal{L}=-\frac{\phi}{4 \Lambda} \tilde{F}^{\mu \nu} F_{\mu \nu}+\frac{1}{2} m_{A}^{2} A^{\mu} A_{\mu}-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}-\partial_{\mu} \phi \partial^{\mu} \phi$
- Chemical potential ξ overcome the Boltzmann suppression: $e^{-\pi \frac{m}{H}} \rightarrow e^{\pi\left(\xi-\frac{m}{H}\right)}$

$$
\begin{aligned}
\xi & \equiv \frac{\dot{\phi}}{2 \Lambda \mathrm{H}} \\
\rho_{A} & =\frac{1}{2}\left\langle\boldsymbol{E}^{2}+\boldsymbol{B}^{2}+\frac{m_{A}^{2}}{a^{2}} \boldsymbol{A}^{2}\right\rangle
\end{aligned}
$$

- The vertical dashed line shows the beginning of boson production:

$$
-k \tau=\xi+\sqrt{\xi^{2}-\frac{m_{A}^{2}}{H^{2}}}
$$

Phenomenological Constrains at CMB

- Backreaction shouldn't affect standard inflation
- Tensor-to-scalar ratio $r<0.056^{[1]}$
- Power spectrum domain at Tree level $P_{\zeta}^{\phi}>P_{\zeta}^{A}$

- Non-Gaussianity $f_{N L}^{\text {equil }}<-27 \pm 4^{[1]}$

Signals from three-point correlation functions

- Oscillation patten in squeezed three-point

$$
\left\langle\zeta_{k_{1}} \zeta_{k_{2}} \zeta_{k_{3}}\right\rangle \propto S\left(\frac{k_{3}}{k_{1}}, \frac{k_{2}}{k_{1}}\right) \xrightarrow{\text { squeezed }} a+b \cos \left(2 \mu \log \left(\frac{k 3}{k 1}\right)+\theta\right) \quad \mu \equiv \sqrt{\frac{m_{A}^{2}}{H^{2}}-\frac{1}{4}}
$$

Signals from four-point correlation functions

- Parity-violation happens when P-transformation can't be achieved by rotation. (typically four external momenta are NOT in a plane)

Two-point and three-point are P -even.
Four-point is the simplest configuration for P -odd

$$
P \text {-even } \quad P \text {-odd }
$$

$\cdot\left\langle\zeta_{k_{1}} \zeta_{k_{2}} \zeta_{k_{3}} \zeta_{k_{4}}\right\rangle \propto T_{(k 1, k 2, k 3, k 4)} \rightarrow \operatorname{Re}[T]+\operatorname{Im}[T]$

- Observations: P-even ${ }^{[1]} \tau_{N L}<(-5.8 \pm 6.5) \times 10^{4}$

$$
\text { P-odd in BOSS galaxy with around } 7 \sigma^{[2]} \text { and } 3 \sigma^{[3]}
$$

[1] Planck 2018 arXiv 1905.05697
[2] arXiv 2206.03625
[3] arXiv 2206.04227

Signals from four-point correlation functions

P - even	$P-$ odd	odd/even
$m_{A}=0, \xi=2.4$		
		$m_{A}=1.3 H, \xi=2.75$

$$
O(1 \%) \sim 0(10 \%)
$$

Signals from gravitational waves

- Chemical potential ξ and mass $\frac{m_{A}}{H}$ evolve due to slow roll and backreaction.

$N=60-50$ slow roll and ξ increases faster than $\frac{m_{A}}{H}$
$N=40 \sim 30$ backreaction flatten ξ
$\mathrm{N}=10$ slow roll break down
*Starobinsky potential is chosen.

Signals from gravitational waves

- Large chemical potential ξ dramatically enhances the GW.
- GW elude CMB scale, but can be detected at (future) interferometer scale.

	$\xi_{C M B}$	$\frac{m_{A}}{H_{C M B}}$
(1)	4.7	4
(2)	2.75	1.3
(3)	2.4	1.3
(4)	2.75	2.1

Conclusions

- Massive gauge boson can be sufficiently produced by Chern-Simons $\phi \tilde{F}^{\mu \nu} F_{\mu \nu}$
- We constrain Chemical potential and mass from CMB measured by Planck 2018
- We show oscillation pattern in Bispectrum and P-violation in Trispectrum
- We study the backreaction and evolution of chemical potential and mass. We show the gravitational wave(smaller than CMB scale) can be detected by the whole range of interferometers.

Signals from four-point correlation functions(Back-up)

Config. I

Config. II

Blue and red triangles rotate about the dashed line.

Why P-odd is $\operatorname{Im}[T]$ (Back-up)

$$
\begin{aligned}
\zeta(t, \boldsymbol{x}) & =\int \frac{d^{3} k}{(2 \pi)^{3}} \zeta(t, \boldsymbol{k}) e^{i \boldsymbol{k} \cdot \boldsymbol{x}} \\
& =\int \frac{d^{3} k}{(2 \pi)^{3}} \zeta^{*}(t, \boldsymbol{k}) e^{-i \boldsymbol{k} \cdot \boldsymbol{x}} \\
\zeta(t,-\boldsymbol{x}) & =\int \frac{d^{3} k}{(2 \pi)^{3}} \zeta(t, \boldsymbol{k}) e^{-i \boldsymbol{k} \cdot \boldsymbol{x}}
\end{aligned}
$$

$\zeta^{*}(t, \boldsymbol{k})$ and $\zeta(t, \boldsymbol{k})$ share the same real part, but different Imaginary part.

Zigzag in massive P-odd(Back-up)

Add a global phase to make mode function to be mostly real

$$
\begin{aligned}
& A_{+}(\tau, k)=\frac{1}{\sqrt{2 k}}{ }^{+\frac{\pi \xi}{2}} W_{-i \xi, i \mu}(2 i k \tau) \\
& A_{+}(\tau, k) \rightarrow W_{-i \xi, i \mu}^{*}\left(2 i k_{*} \tau_{*}\right) A_{+}(\tau, k)
\end{aligned}
$$

Thus we simplify in-in formalism to fasten numerical calculation

