Enhancing CMB Acoustic Phase Shift with Dark Matter Loading

Daven W. R. Ho University of Notre Dame

In collaboration with Subhajit Ghosh and Yuhsin Tsai

PHENO 2023, Pittsburgh

Email: dho2@nd.edu

- Radiation pressure in photon-baryon plasma leads to sound (i.e. pressure) waves before recombination – this produces the <u>acoustic peak structure</u> in the CMB power spectrum
- Phase shift produced in acoustic oscillations leads to shift in CMB peak positions

• <u>Limited causes:</u> phase shift produced by **propagation behaviour of dark radiation/neutrinos** (or isocurvature fluctuations). Use this feature to zoom in on specific kinds of new physics

Phase Shift in the CMB

- Phase shift effect in the CMB has been studied before, for when neutrinos are free-streaming vs when they are fluid-like (Ref: Baumann et. al. arXiv:1508.06342v3)
- Compute phase shift in the Cl's w.r.t. Lambda-CDM model with free streaming neutrinos using CLASS: peak positions of CMB power spectrum shift depending on proportion of neutrinos that self-interact

Maximum Phase Shift?

(Q1): Does the fully self-scattering neutrino case produce the *maximum possible* phase shift?

No. Phase shift can be enhanced with:

"Dark Matter Loading"

- Effect can be produced when dark radiation/neutrinos scatter efficiently with a fraction
 of the dark matter to form a radiation fluid
- For maximal effect, suppose from now on that the role of dark radiation is played by neutrinos — i.e. no additional radiation component

Dark Matter "Loading" Effect

 Sound speed of efficiently scattering radiation-matter fluid:

$$c_s(au) = \sqrt{rac{1}{3(1+R(au)))}}$$
 ; $R(au) = rac{3}{4}rac{
ho_{mat}}{
ho_{rad}}$

- Matter loading effect occurs through energy ratio $R(\tau)$, slows down sound speed over time
- f_{χ} : <u>proportion of total dark matter</u> that scatters with neutrinos, <u>appears in R(τ)</u>
- Approximate constraint on f_{χ} from matter power spectrum suppression: $f_{\chi} \lesssim 2.5\%$

$$(
ho_{mat},
ho_{rad})=(
ho_b,
ho_\gamma),(
ho_\chi,
ho_
u)$$

Observable Enhancement

- Shift in peak positions in temperature and E-mode Cl power spectrum w.r.t. free-streaming neutrinos increases with f_{χ} (calculated using CLASS)
- Shift for DM-loaded cases significantly larger than the fully self-scattering neutrino case
- Even for the smaller f_χ cases, difference in shift is of order ≈ 1: effect on CMB is <u>observable</u>

Toy Model: Coupled Oscillators

Radiation energy ratios

$$egin{aligned} \ddot{\delta}_{\gamma}(au) + k^2 c_{\gamma}^2(au) \delta_{\gamma}(au) &= rac{2}{ au^2} (f_{\gamma} \delta_{\gamma}(au) + f_{
u} \delta_{
u}(au))) \ \ddot{\delta}_{
u}(au) + k^2 c_{
u}^2(au) \delta_{
u}(au) &= rac{2}{ au^2} (f_{\gamma} \delta_{\gamma}(au) + f_{
u} \delta_{
u}(au))) \end{aligned}$$

Radiation Era

- (Highly) simplified model derived from the cosmological perturbation equations
- Tight coupling approximation for coupled photon-baryon and neutrino-DM system respectively
- Simplified gravitational coupling as Poisson equation with Hubble pre-factor

Toy Model: Qualitative Picture

$$egin{aligned} \ddot{\delta}_{\gamma}(au) + k^2 c_{\gamma}^2(au) \delta_{\gamma}(au) &= rac{2}{ au^2} (f_{\gamma} \delta_{\gamma}(au) + f_{
u} \delta_{
u}(au))) \ \ddot{\delta}_{
u}(au) + k^2 c_{
u}^2(au) \delta_{
u}(au) &= rac{2}{ au^2} (f_{\gamma} \delta_{\gamma}(au) + f_{
u} \delta_{
u}(au))) \end{aligned}$$

Radiation Era

- Two competing effects on coupling between oscillators:
 - 1. Hubble decreases with time: coupling weakens

$$\mathcal{H}(au) \sim rac{1}{ au}$$

Expectation

$$R(au) = rac{3}{4} rac{f_{mat}}{f_{rad}} rac{a(au)}{a_{ea}}$$

Matter effect: dependent on f_x

Enhancement Over Time

- Compute shift in peaks w.r.t. pure self-scattering neutrinos
- Compare <u>time evolution</u> of phase shifts from toy model with exact CLASS results

• Captures qualitative trend (up to y-scaling) of phase shift produced in photon oscillations over time: flattening at later time more obvious for smaller f_{χ} but phase shift grows for larger f_{χ}

Dependence on f_x

- Captures *qualitative trend* of shift in peaks over time as function of the proportion of interacting dark matter f_{χ}
- Phase shift in the photon oscillator grows faster for larger f_{χ}
- Apparent linear dependence of shift on f_{χ} for a given peak at early time

Transfer Function

- Consider transfer functions in <u>k-modes</u>
- k-dependence of phase shift, evaluated at matter-radiation equality time (z = 3400)
- Mis-match in qualitative trends for smaller k values: additional effect?
- Apparent linear f_{χ} dependence for small k

CLASS

Toy Model

Conclusion

- 1. CMB phase shift is a distinctive signature for studying dark radiation/neutrino propagation behaviour
- 2. Phase shift enhanced when dark radiation/neutrinos scatters with DM due to matter loading effect
- Toy model of coupled oscillators provides simple way to understand qualitative behaviour

Work in progress:

- Go from qualitative to quantitative understanding
- Solve analytically for parametric dependences
- Additional effects/corrections to model

Back up slides

Delta tau frequency correction

 Artificial phase shift also produced (when comparing peak positions of photon perturbations between cases) due to time-dependence of frequency itself

A more complete model

- More complete oscillator equation (tightly coupled)
- Various terms that we can turn on to match results

$$egin{aligned} \ddot{\delta}_r(au) + \mathcal{H}(1-3c_r^2)\dot{\delta}_r(au) + k^2c_r^2(\delta_r(au)-4\sigma_r(au))) &= F_k(au) \end{aligned} \qquad r = \gamma,
otag \ F_k(au) = 4\ddot{\phi} + 4\mathcal{H}(1-3c_r^2)\dot{\phi} - rac{4k^2}{3}\psi \end{aligned}$$

Toy model future?

 $\Delta \delta_{v}(\tau)$ at k=0.1785 for 10% IDM

- Original
- with damping
- x2 Source
- x2 with damping
- \rightarrow CLASS H(τ)
- \rightarrow CLASS H(τ) with damping

IDR Peaks in τ (1/Mpc)

DM-neutrino Model

$$\mathcal{L} \supset Y \frac{1}{\Lambda} \left(H^{\dagger} l \right) (\psi \chi) \qquad \Rightarrow \qquad \eta \, \delta_{ij} \, \nu_i \psi_j \chi \quad \text{where } \eta = Y \, \frac{v}{\sqrt{2}\Lambda}$$

$$\sigma_{\chi\nu} \approx \sigma^{(0)} \simeq 10^{-13} \times \sigma_{\rm Th} \times \left(\frac{\eta}{0.1}\right)^4 \left(\frac{m_{\chi}}{100 \text{ GeV}}\right)^{-2}$$

Reference: Subhajit Ghosh, Rishi Khatri, and Tuhin S. Roy, "Dark neutrino interactions make gravitational waves blue", Phys. Rev. D **97**, 063529, 29 March 2018

Numerical analysis

 Calculations of exact cosmological perturbation equations using the Cosmic Linear Anisotropy Solving System (CLASS)

The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes Diego Blas¹, Julien Lesgourgues^{1,2,3} and Thomas Tram^{2,4}
Published 22 July 2011 • Published under licence by IOP Publishing Ltd

<u>Journal of Cosmology and Astroparticle Physics</u>, <u>Volume 2011</u>, <u>July 2011</u>Citation Diego Blas *et al* JCAP07(2011)034**DOI** 10.1088/1475-7516/2011/07/034

 CLASS plots of phase shifts in tau and k space obtained by peak fitting on points produced from CLASS output