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Acoustic Phase Shift
• Radiation pressure in photon-baryon plasma leads to sound 

(i.e. pressure) waves before recombination – this produces 
the acoustic peak structure in the CMB power spectrum
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“ Gravitational 
Drag”

“Phase Shift”

CMB Acoustic Peaks

• Limited causes: phase shift produced by propagation behaviour of dark radiation/neutrinos 
(or isocurvature fluctuations). Use this feature to zoom in on specific kinds of new physics

• Phase shift produced in acoustic oscillations leads to shift 
in CMB peak positions



Phase Shift in the CMB
• Phase shift effect in the CMB has been studied before, for when neutrinos are free-streaming vs when 

they are fluid-like (Ref: Baumann et. al. arXiv:1508.06342v3)

• Compute phase shift in the Cl’s w.r.t. Lambda-CDM model with free streaming neutrinos using CLASS: peak 
positions of CMB power spectrum shift depending on proportion of neutrinos that self-interact
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Zoom

https://arxiv.org/abs/1508.06342v3


Maximum Phase Shift?

• For maximal effect, suppose from now on that the role of 
dark radiation is played by neutrinos – i.e. no additional 
radiation component
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• No. Phase shift can be enhanced with:

• Effect can be produced when dark radiation/neutrinos scatter efficiently with a fraction 
of the dark matter to form a radiation fluid

(DM) (DM)

e.g.

(Q1): Does the fully self-scattering neutrino case produce the 
maximum possible phase shift?



Dark Matter “Loading” Effect
• Sound speed of efficiently scattering 

radiation-matter fluid:

• Matter loading effect occurs through 
energy ratio R(), slows down sound 
speed over time

• fχ : proportion of total dark matter that 
scatters with neutrinos, appears in R()  

• Approximate constraint on fχ from matter 
power spectrum suppression: 

;
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Observable Enhancement
• Shift in peak positions in temperature and E-mode Cl power spectrum w.r.t. free-streaming 

neutrinos increases with fχ (calculated using CLASS) 

• Shift for DM-loaded cases significantly larger than the fully self-scattering neutrino case

• Even for the smaller fχ cases, difference in shift is of order ≈ 1: effect on CMB is observable
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Order 1 difference 
in l-modes

(Q2): Is there a 
simple way to 

understand what 
is going on? 



Toy Model: Coupled Oscillators

Gravitational 
Coupling

• (Highly) simplified model derived from the cosmological 
perturbation equations 

• Tight coupling approximation for coupled photon-baryon 
and neutrino-DM system respectively

• Simplified gravitational coupling as Poisson equation 
with Hubble pre-factor

Radiation 
energy ratios
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Radiation Era



Toy Model: Qualitative Picture

• Two competing effects on coupling between 
oscillators:

1. Hubble decreases with time: coupling weakens

2. Energy ratio increases with time: frequency 
difference between oscillators grow

Phase Shift

Time

Matter effect: 
dependent on fχ
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Radiation Era



Enhancement Over Time
• Compute shift in peaks w.r.t. pure self-scattering neutrinos 

• Compare time evolution of phase shifts from toy model with 
exact CLASS results 
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time

“Phase Shift”

• Captures qualitative trend (up to y-scaling) of phase shift produced in photon oscillations over 
time: flattening at later time more obvious for smaller fχ but phase shift grows for larger fχ



Dependence on fχ

• Captures qualitative trend of shift in peaks over time as function of the proportion of 
interacting dark matter fχ

• Phase shift in the photon oscillator grows faster for larger fχ

• Apparent linear dependence of shift on fχ for a given peak at early time 

Time
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Transfer Function
CLASS Toy Model

• Consider transfer 
functions in k-modes

• k-dependence of phase 
shift, evaluated at 
matter-radiation equality 
time (z = 3400)

• Mis-match in qualitative 
trends for smaller k 
values: additional effect?

• Apparent linear fχ 

dependence for small k
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Conclusion

Work in progress:
• Go from qualitative to quantitative understanding

• Solve analytically for parametric dependences

• Additional effects/corrections to model

1. CMB phase shift is a distinctive signature for studying 
dark radiation/neutrino propagation behaviour 

2. Phase shift enhanced when dark radiation/neutrinos 
scatters with DM due to matter loading effect

3. Toy model of coupled oscillators provides simple way 
to understand qualitative behaviour
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Back up slides

13



Delta tau frequency correction
• Artificial phase shift also produced (when comparing peak positions of photon perturbations 

between cases) due to time-dependence of frequency itself
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A more complete model
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• More complete oscillator equation (tightly coupled) 
• Various terms that we can turn on to match results



Toy model future? 
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DM-neutrino Model

Reference: Subhajit Ghosh, Rishi Khatri, and Tuhin S. Roy, 
“Dark neutrino interactions make gravitational waves blue”,
Phys. Rev. D 97, 063529, 29 March 2018
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Numerical analysis

• Calculations of exact cosmological perturbation equations using the 
Cosmic Linear Anisotropy Solving System (CLASS)

• CLASS plots of phase shifts in tau and k space obtained by peak fitting 
on points produced from CLASS output

The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes
Diego Blas1, Julien Lesgourgues1,2,3 and Thomas Tram2,4

Published 22 July 2011 • Published under licence by IOP Publishing Ltd
Journal of Cosmology and Astroparticle Physics, Volume 2011, July 2011Citation Diego Blas et 
al JCAP07(2011)034DOI 10.1088/1475-7516/2011/07/034
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