Light Stepped Dark Sectors Face Cosmological Datasets

Itamar J. Allali

Institute of Cosmology, Tufts University

PHENO 2023 May 9, 2023

Based on work with M.P. Hertzberg and F. Rompineve 2305.????

IIA

2 Stepped Dark Radiation Models

1 Additional (Dark) Light Species

Stepped Dark Radiation Models

The ACDM Concordance (?) Model

$\Lambda CDM model$

(from Planck 18 results, Aghanim et al 18)

- 6 free parameters
- Agreement between CMB, BAO, LSS

Stepped Dark Radiation Models

Results

The ACDM Concordance (?) Model

 $\Lambda CDM model$

(from Planck 18 results, Aghanim et al 18)

- 6 free parameters
- Agreement between CMB, BAO, LSS

Tensions emerge with direct measurements:

H_0 tension with S H_0 ES

(adapted from Di Valentino et al 21)

Stepped Dark Radiation Models

Results

The ACDM Concordance (?) Model

 $\Lambda CDM model$

(from Planck 18 results, Aghanim et al 18)

- 6 free parameters
- Agreement between CMB, BAO, LSS

Tensions emerge with direct measurements:

 S_8 tension with cosmic shear

Results

Simple Adjustment: Dark Relativistic Species $\Delta N_{\rm eff}$

Adding dark radiation to ΛCDM has been considered:

$$\Delta N_{\rm eff} \equiv \rho_{\rm DR} / \rho_{\nu,1} \tag{1}$$

- Free streaming radiation constrained heavily by CMB
- Strongly self-interacting a bit less, still constrained
- Known degeneracy with the value of *H*₀

2 Stepped Dark Radiation Models

Dark Radiation with Mass Threshold

- Coupled light species, some with a mass $m~(\sim {
 m eV})$
- Gives rise to a relativistic sector with a step in abundance (Aloni et al 2021)
- Affect of step: high ℓ modes "see" smaller $\Delta N_{\rm eff}$

Dark Radiation with Mass Threshold

- Coupled light species, some with a mass $m~(\sim {
 m eV})$
- Gives rise to a relativistic sector with a step in abundance (Aloni et al 2021)
- Affect of step: high ℓ modes "see" smaller $\Delta N_{\rm eff}$

$$\frac{\Delta N_{\rm eff}^{\rm IR}}{\Delta N_{\rm eff}^{\rm UV}} = (1 + r_g)^{1/3} \ (2)$$

- 3 pheno parameters:
 - Late time $\Delta N_{\rm eff}^{\rm IR}$
 - Redshift of step z_t (determined by m)
 - Step size *r*g

Motivation for this Analysis

Stepped Dark radiation models are interesting and deserve study:

- The potential to solve tensions well
- Simple and well-motivated particle physics modeling is rare

Motivation for this Analysis

Stepped Dark radiation models are interesting and deserve study:

- The potential to solve tensions well
- Simple and well-motivated particle physics modeling is rare

Extending the Analysis

- Including LSS data: has been shown to constrain other models (e.g. EDE (Hill et al 20 | Ivanov et al 20 | D'Amico et al 20 | Smith et al 20))
- Conservative analysis: broad priors and all parameters free (different than previous choices (Aloni et al 21 | Joseph et al 22))

1 Additional (Dark) Light Species

2 Stepped Dark Radiation Models

Testing Against LSS, Preliminary Results

• LSS data does not significantly impact $\Delta N_{\rm eff}$ constraint

Implemented with modified version of CLASS: (Blas + Lesgourgues + Tram 11) MCMC analysis using MontePython (Audren et al 12, Brinckmann + Lesgourgues 18) EFTofLSS likelihood from PyBird: (D'Amico + Senatore + Zhang 20)

I.J.A. (T

H_0 tension: $\sim 3 \sigma$ tension across various measures

 H_0 tension: $\sim 3 \sigma$ tension across various measures

• S_8 tension (~ 2.7 σ) slightly better than ACDM (~ 3 σ)

• Fit to data: not convincingly better than ACDM ($\Delta\chi^2\sim-1)$

Conclusions

- Dark radiation models with mass threshold (step) are interesting
- Better particle physics embedding than competitive models

Conclusions

Analysis including LSS data:

• Does not alter relaxed $\Delta N_{\rm eff}$ constraint, or tensions

Conservative analysis raises questions about:

- Compatibility of datasets with SH₀ES and S₈ (3 σ tensions)
- Evidence over alternatives, especially ΛCDM (small $\Delta \chi^2$)

Monte Carlo Markov Chain

Models implemented using modified version of CLASS:

(Blas + Lesgourgues + Tram 11)

MCMC analysis using MontePython, adding datasets:

(Audren et al 12, Brinckmann + Lesgourgues 18)

- Baseline: Planck18 + BAO + Pantheon (Aghanim et al 18 | Beutler et al 11, Ross et al 15, Alam et al 17 | Scolnic et al 19)
- + FS: Adding EFTofLSS (via PyBird) (D'Amico + Senatore + Zhang 20)
- + S_8 : Adding priors on S_8 from KiDS-100 (0.759^{+0.024}_{-0.021}) and DES-Y3 (0.772^{+0.018}_{-0.017}) (Asgari et al 21) (Amon et al 22)
- + M_b : Adding prior on M_b from SH₀ES (-19.253±0.027)

For tension, using combined $S_8=0.767\pm0.014$

Fitting to CMB + BAO + SN

Tension with H_0 :

Tension with S_8 :

	ΛCDM	SDR		ΛCDM	WIDM	SIDM
Tension	5.6σ	3.0 σ	Tension	3.2 <i>σ</i>	2.9σ	3.2 <i>σ</i>
$\Delta \chi^2$	—	-1.4	$\Delta \chi^2$		-1.8	+0.1
$Q_{\rm DMAP}^{H_0}$	5.7σ	2.7σ	$Q_{\rm DMAP}^{S_8}$	3.5σ	2.9σ	3.5σ
ΔAIC^{H_0}	—	-20.7	ΔAIC^{S_8}		+4.8	+10.6

$$\begin{split} &\Delta\chi^2 \equiv \chi^2 - \chi^2_{\Lambda_C DM} \\ &Q^{H_0 \text{ or } S_8}_{\text{DMAP}} \equiv \sqrt{\chi^2_{+H_0 \text{ or } S_8} - \chi^2} \\ &\Delta \text{AIC}^{H_0 \text{ or } S_8} \equiv \Delta\chi^2_{+H_0 \text{ or } S_8} + \# \text{ of free parameters} \end{split}$$

Fitting to CMB + BAO + SN + LSS

Tension with H_0 :

Tension with S_8 :

	ΛCDM	SDR		ΛCDM	WIDM	SIDM
Tension	5.5σ	2.9 <i>σ</i>	Tension	3.0 σ	2.6σ	2.7 σ
$\Delta \chi^2$	—	-1.6	$\Delta \chi^2$		-0.6	-1.0
$Q_{\rm DMAP}^{H_0}$	5.5σ	2.7σ	$Q_{\rm DMAP}^{S_8}$	3.0σ	2.8σ	2.6σ
ΔAIC^{H_0}	—	-18.7	ΔAIC^{S_8}		+7.9	+6.4

$$\begin{split} &\Delta\chi^2 \equiv \chi^2 - \chi^2_{\Lambda_C DM} \\ &Q^{H_0 \text{ or } S_8}_{\text{DMAP}} \equiv \sqrt{\chi^2_{+H_0 \text{ or } S_8} - \chi^2} \\ &\Delta \text{AIC}^{H_0 \text{ or } S_8} \equiv \Delta\chi^2_{+H_0 \text{ or } S_8} + \# \text{ of free parameters} \end{split}$$

Fitting to CMB + BAO + SN + LSS + H_0

Tension with H_0 :

	ΛCDM	SDR
Tension	4.6 σ	1.3σ
$\Delta \chi^2$		-24.7

 $\Delta\chi^2\equiv\chi^2-\chi^2_{\Lambda_CDM}$

Fitting to $CMB + BAO + SN + LSS + S_8$

	ΛCDM	WIDM	SIDM
Tension with H_0	5.0σ	2.6 <i>σ</i>	2.8 <i>σ</i>
Tension with S_8	2.2σ	1.5σ	1.8σ
$\Delta \chi^2$		-2.1	-3.6

 $\Delta\chi^2\equiv\chi^2-\chi^2_{\Lambda_CDM}$

Fitting to CMB + BAO + SN + LSS + $S_8 + H_0$

	ΛCDM	WIDM	SIDM
Tension with H_0	4.5σ	1.1σ	0.9 <i>σ</i>
Tension with S_8	1.6σ	1.4σ	1.7σ
$\Delta \chi^2$		-26.9	-18.1

 $\Delta\chi^2\equiv\chi^2-\chi^2_{\Lambda_CDM}$