## Inevitable Large non-Gaussianity from Curvaton Models Based on Lodman, Lu, and Randall (In Preparation)

Jackie Lodman<sup>1</sup> Lisa Randall<sup>1</sup> Qianshu Lu<sup>1</sup>

<sup>1</sup>Department of Physics Harvard University

2023 Phenomenology Symposium, May 8-10th

#### Table of Contents

- Introduction
- What We Did
- Results
  - Case 1: Models that Do NOT Satisfy Constraints Without a Curvaton
  - Case 2: Models that DO Satisfy Constraints Without a Curvaton
- 4 Conclusions

## Introduction: Inflationary Observables

- Inflationary observables are used to constrain different inflation models
- Inflationary Observables:
  - Power Spectrum Amplitude:  $A_s = 3.044 \pm 0.014$  (Planck 2018)
  - Spectral Tilt:  $n_s = 0.9649 \pm 0.0042$  (Planck 2018)
  - Tensor-to-Scalar Ratio:  $r \le 0.036$  (Keck/BICEP 2018)
  - $\bullet$  Non-Gaussianity:  $f_{
    m NL}^{
    m (loc)} =$  -0.9  $\pm$  5.1 (Planck 2018)
- Single field inflation produces  $f_{\rm NL}^{({
  m loc})}$  of order the slow roll parameters ( $|f_{
  m NL}^{({
  m loc})}| < 0.05$ ) (Maldacena 2002)

Jackie, Lodman (Harvard)

## Introduction: Curvatons $(\sigma)$



- Non-Gaussianity produced by curvatons is not constrained to be order the slow roll parameters. Therefore, we can achieve  $f_{\rm NL}^{\rm (loc)}\sim \mathcal{O}(1)$
- Curvatons provide a simple explanation for a potential observation of  $f_{\rm NL}^{({
  m loc})}\sim {\cal O}(1)$ , which is still allowed by current constraints!

□ ▶ ◀♬ ▶ ◀돌 ▶ ◀돌 ▶ · 돌 · 쒼익(3

### Curvatons Can "Save" Inflation Models:

- Inflation models are constrained by our observations of  $(n_s, r)$
- Adding a curvaton  $\rightarrow$  decrease r and increase  $n_s$
- Inflation models that do not satisfy  $(n_s, r)$  constraints because they generically produce r too large and  $n_s$  too small  $\rightarrow$  potentially "saved" by adding curvaton



### What We Did:

- Overarching Question: When is large  $f_{\rm NL}^{\rm (loc)}$  ( $|f_{\rm NL}^{\rm (loc)}| > 0.05$ ) inevitably produced by single field inflation + curvaton models  $\to$  model can be distinguished from single field inflation
  - Important: "Type" of model
    - Model satisfies  $(n_s, r)$  constraints without a curvaton
    - Model satisfies  $(n_s, r)$  with a curvaton (but not without)
    - Model does not satisfy (n<sub>s</sub>, r) constraints even with a curvaton (we do not discuss this case)
- Methodology: Explored correlations between observables (both analytically and through systematic numerical scans of test models of each type)

# Summary Of Findings

- If the underlying inflation model DOES NOT satisfy  $(n_s, r)$  constraints without a curvaton, then adding a curvaton to fulfill these constraints will almost certainly lead to a large  $f_{\rm NL}^{\rm (loc)}$   $(|f_{\rm NL}^{\rm (loc)}| > 0.05)$
- If the underlying inflation model DOES satisfy  $(n_s,r)$  constraints, then a large  $f_{\rm NL}^{\rm (loc)}$   $(|f_{\rm NL}^{\rm (loc)}|>0.05)$  is only possible if  $(m_\sigma,\sigma)$  follow a tight scaling relation

# Case 1: Inflation Model Does NOT Satisfy Constraints Without a Curvaton

• From (Fonseca and Wands 2012):

$$f_{\rm NL}^{\rm (loc)} = \left(\frac{5}{4R_{\sigma}} - \frac{5}{3} - \frac{5R_{\sigma}}{6}\right)\omega_{\sigma}^{2}$$

$$r = 16\epsilon_{*}(1 - \omega_{\sigma})$$

$$n_{s} = 1 - 2\epsilon_{*} + 2\eta_{\sigma\sigma}\omega_{\sigma} + (1 - \omega_{\sigma})(-4\epsilon_{*} + 2\eta_{\phi\phi}),$$
(1)

where  $\omega_{\sigma}=R_{\sigma}^{2}\mathcal{P}_{S_{G}}/9\mathcal{P}_{\zeta}$ ,  $R_{\sigma}=3\Omega_{\sigma}/(4-\Omega_{\sigma})$ ,  $\Omega_{\sigma}=\frac{\rho_{\sigma}}{\rho_{\text{tot}}}|_{H=\Gamma_{\sigma}}=$  weighted energy density in curvaton when it decays

• Require a large curvaton contribution (large  $\omega_{\sigma}$ ) to "save" inflation model  $\rightarrow |f_{\rm NL}^{\rm (loc)}| > 0.05$ 

4□ > 4□ > 4 = > 4 = > = 90

## Case 1 Example Model: Natural Inflation + Curvaton



- Boundary of hole is the contour of  $m_{\sigma_{\max}}$
- Why does decreasing  $\Gamma_{\phi}$  not fix the problem?

# Case 1 Example Model: Natural Inflation + Curvaton (2)



- $\Gamma_{\phi} \downarrow$ , gap closes
- ullet BUT very small  $(m_{\sigma},\sigma)$  region produces small  $f_{
  m NL}^{
  m (loc)}$
- ullet Therefore, generically obtain large (distinguishable)  $f_{
  m NL}^{
  m (loc)}$  from models of this type

# Case 2: Inflation Model Does Satisfy Constraints Without a Curvaton

• From (Fonseca and Wands 2012):

$$f_{\rm NL}^{\rm (loc)} = \left(\frac{5}{4R_{\sigma}} - \frac{5}{3} - \frac{5R_{\sigma}}{6}\right)\omega_{\sigma}^{2}$$

$$r = 16\epsilon_{*}(1 - \omega_{\sigma})$$

$$n_{s} = 1 - 2\epsilon_{*} + 2\eta_{\sigma\sigma}\omega_{\sigma} + (1 - \omega_{\sigma})(-4\epsilon_{*} + 2\eta_{\phi\phi}),$$
(2)

where  $\omega_{\sigma}=R_{\sigma}^{2}\mathcal{P}_{S_{G}}/9\mathcal{P}_{\zeta}$ ,  $R_{\sigma}=3\Omega_{\sigma}/(4-\Omega_{\sigma})$ ,  $\Omega_{\sigma}=\frac{\rho_{\sigma}}{\rho_{\text{tot}}}|_{H=\Gamma_{\sigma}}=$  weighted energy density in curvaton when it decays

- Model already satisfies constraints → small curvaton contribution to observables
- Generically leads to  $|f_{\rm NL}^{\rm (loc)}| < 0.05$
- Achieving  $|f_{\rm NL}^{\rm (loc)}| > 0.05$  requires fulfilling a tight scaling relation between curvaton mass and amplitude

## Case 2 Example Model: $\alpha$ -Attractor T Model + Curvaton



- Tight scaling relation between curvaton mass and amplitude required to achieve  $|f_{\rm NI}^{\rm (loc)}|>0.05$ 
  - Exact relationship depends on whether universe MD or RD when curvaton starts to oscillate
- $\bullet$  Therefore, generically achieve indistinguishable  $f_{
  m NL}^{
  m (loc)}$  ( $|f_{
  m NL}^{
  m (loc)}|$  < 0.05)

Jackie, Lodman (Harvard)

#### **Conclusions**

- Curvatons are light (compared to the inflaton) massive scalar particles that can explain an observation of  $f_{\rm NL}^{\rm (loc)}\sim \mathcal{O}(1)$
- Curvatons generically raise  $n_s$  and lower r, potentially making some ruled out inflation models viable again
- We found that an  $f_{\rm NL}^{({
  m loc})}$  value distinguishable from the single field inflaton prediction ( $|f_{
  m NL}^{({
  m loc})}|>0.05$ ) occurs if the curvaton is required to make the model viable again
- In contrast, one generically achieves a indistinguishable  $f_{\rm NL}^{\rm (loc)}$  ( $|f_{\rm NL}^{\rm (loc)}| < 0.05$ ) if the model is viable without the curvaton, unless a very tight curvaton mass-amplitude scaling ratio is met
- These results have consequences for how we determine the viability of curvaton models when next generation experiments release results