

Searches for electroweak production of SUSY particles with the CMS experiment

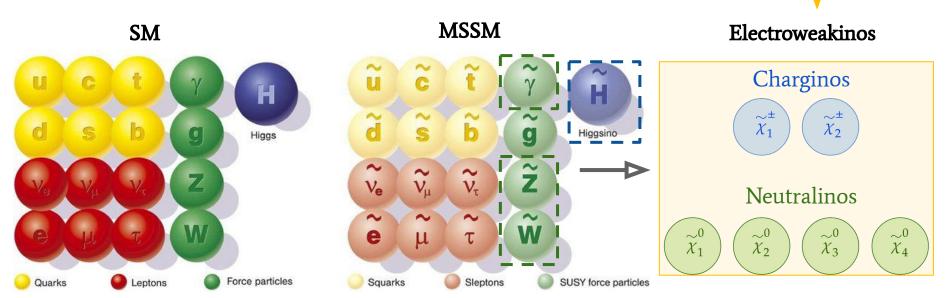
PABLO MATORRAS-CUEVAS

Instituto de Física de Cantabria (CSIC-Universidad de Cantabria)

On behalf of the CMS collaboration

Phenomenology Symposium, University of Pittsburgh (PA, USA)

May 09th, 2023



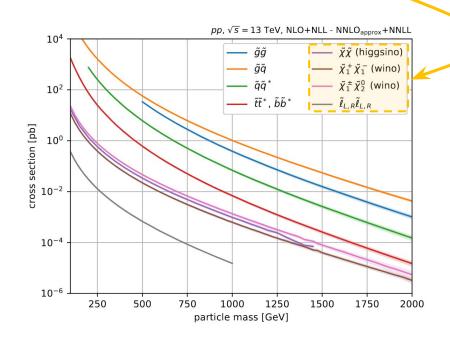
Electroweak SUSY in a nutshell

- In general SUSY is constructed as an extension of the standard model (SM)
 - → Electroweakinos are mixtures of Winos, Zinos, photinos and higgsinos, whose mass eigenstates are charginos and neutralinos ————
- Relevant due to:
 - o Contribute to large corrections of the Higgs mass
 - Its lightest supersymmetric particle (LSP), typically the neutralino, is a good dark matter candidate
 - Masses accessible by the LHC (~order of the TeV)

Electroweak SUSY: Challenges

Multiple SUSY models:

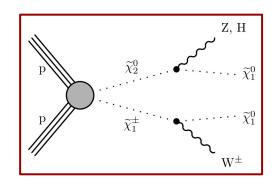
→ Particles' masses unknown and large parameter space to cover

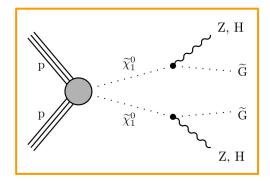

Challenges

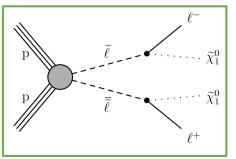
- Several SM processes with similar kinematics and large cross-sections (e.g. Drell-Yan, boson, diboson or ttbar production, also including jets)
 - → Compressed scenarios: Difficult signal to background separation
- Electroweak (EWK) SUSY has small cross section, especially sleptons

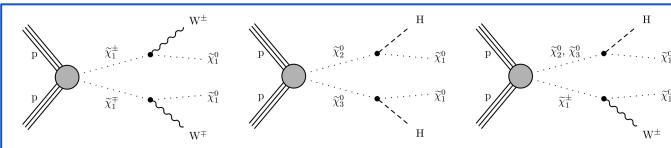
Several interesting Run-2 results address these difficulties:

- Exploiting the additional data and novel analysis techniques
- Combining analyses probing complementary phase spaces:




Electroweakino Combination: Considered Models




CMS PAS SUS-21-008

- An improvement respect the previous Eletroweakino Combination (<u>JHEP03(2018)160</u>) using 2016 data that targeted the production of:
 - Wino-like chargino and neutralino, decaying via a bino like LSP neutralino
 - o Neutralino pair production in Gauge-Mediated SUSY breaking (GMSB), quasi degenerate Higgsinos
- Revisit the same interpretation with Run 2 data, including some improvements
- New interpretations also considered:
 - o Chargino/neutralino production in a Higgsino-bino interpretation.
 - o Slepton pair production

Combination strategy

Leptonic analyses:

► 2/3l soft: <u>JHEP04(2022)091</u>

► 2l on-Z/non res:

JHEP04(2021)123

► ≥3l: <u>JHEP04(2022)147</u>

Hadronic/Semihardronic analyses:

► 1l 2b: <u>JHEP10(2021)045</u>

► 4b: <u>JHEP05(2022)014</u>

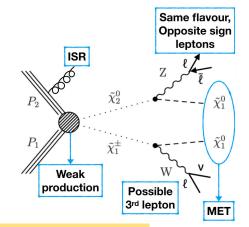
- Hadr. WX: <u>2205.09597</u>

Ī	Search	Gau	gino		GMSI	3	Higg	gsino-l	oino	Sleptons	
	Scarcii	WZ	WH	ZZ	ZH	HH	WW	HH	WH	$\ell^+\ell^-$	
	$2/3\ell$ soft	1								✓	
	2ℓ on-Z	1		1	1						
	2ℓ non-res.									✓	
	≥3ℓ	<u>/_</u>	√ _	✓_		_/_			✓		l
	1 <i>ℓ</i> 2b		/						✓		ī
	4b					1		/			
	Hadr. WX	1	✓				1		✓		ŀ

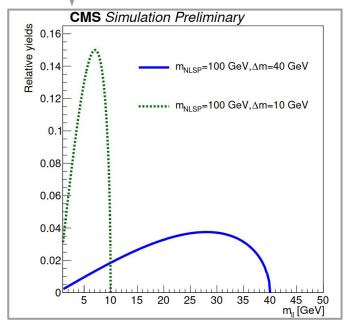
n.b. Not all Signal Regions (SR) per analysis were included, due to some overlaps with each others

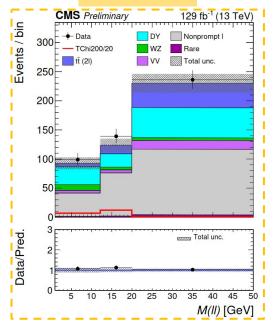
Leptonic input analyses

Leptonic analyses:

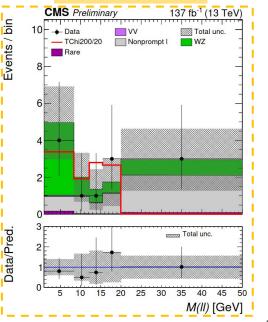

- 2/3l soft: <u>JHEP04(2022)09</u> (Compressed)
 - "2l bin": Two opposite sign (OS) same flavour (SF) lepton pair,
 - o "3l bin": One additional SF lepton (e, μ)
 - o 3.5 (5) $< p_{\tau}(lep) < 30 \text{ GeV for 2l (3l) bins and an ISR jet.}$
 - Further binned in terms of p_T^{miss} and m_{II}
 - → New parametric signal extraction to improve sensitivity
- 2l on-Z/non res: <u>JHEP04(2021)123</u> (Boosted)
 - o Two OS SF leptons (ee/ $\mu\mu$), with SR split in terms of p_T^{miss} .
 - o on Z analysis: 86<m_{II}<96 GeV, using standard jet (AK4) & wider (AK8) jet reconstructions, further splitting in terms of b-jet content.
 - o off Z analysis: 20<m_{||}<65 GeV & m_{||}>120 GeV
- ≥31: <u>JHEP04(2022)147</u> (Intermediate)
 - o ee/ $\mu\mu$ or 3/4l with up to 2 hadronic taus (τ_h) .
 - o p_T¹¹>25 GeV, p_T¹²>20 GeV

Search	Gau	gino	1	GMSE	3	Higgsino-bino		
Search	WZ	WH	ZZ	ZH	HH	WW	НН	WH
$2/3\ell$ soft	1							
2ℓ on-Z	1		1	✓				
2ℓ non-res.								
≥3ℓ	1	1	1	1	1			1


Optimisation of 2/31 soft analysis


CMS

- Each mass hypothesis has different kinematics
 - Optimise binnings per each mass splitting wrt <u>JHEP04(2022)09</u>
 - Use m_{II} as discriminating variable
 - \rightarrow Individual binning for each Δ m and SR.
 - Expected exclusion of Next to LSP improved by ~5-25 GeV



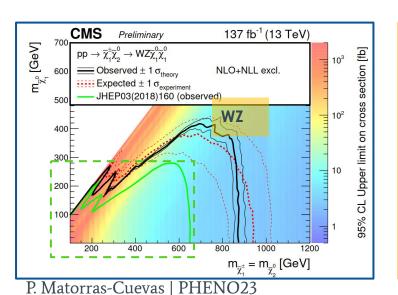
medium p_T^{miss}, 3l

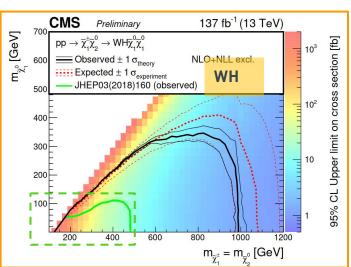
low p_rmiss, 2l

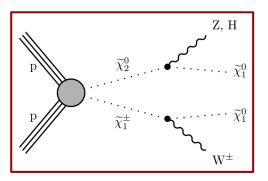
Hadronic & semihadronic input analyses

Hadronic & Semihadronic analyses:

- ► 1l 2b : <u>JHEP10(2021)045</u>
 - o $p_T^{l1}>30$ GeV, 2 b-tagged jets consistent with the Higgs boson mass, and large p_T^{miss} .
- ► 4b: <u>JHEP05(2022)014</u>
 - o No leptons. Two Higgs boson, each H→bb
 - o SRs based on N_{b-iets}.
 - Also considering boosted topologies (with AK8 jets)
- Hadr. WX: <u>2205.09597</u>
 - At least 2 AK8 jets, compatible with W, Z and H bosons.
 - o 2-6 AK4 jets
 - → New for Run 2 combination
- → Additional sensitivity in the uncompressed spectra

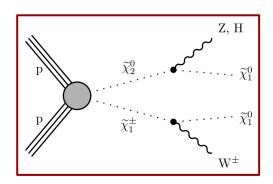

Search	Gau	gino	GMSB			Higgsino-bino			
Scarcii	WZ	WH	ZZ	ZH	НН	WW	НН	WH	
1 <i>ℓ</i> 2b		✓						✓	
4b					✓		1		
Hadr. WX	1	✓				✓		✓	

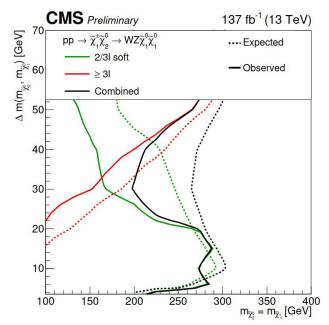

Chargino/neutralino production in WZ/WH final states

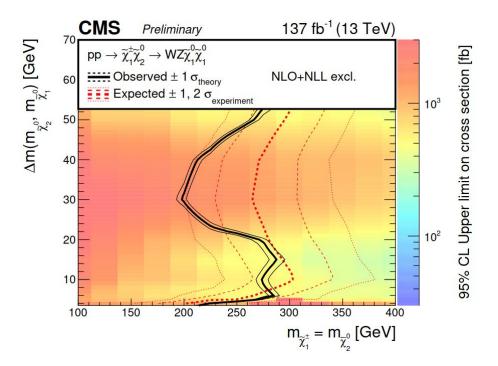


Several analyses contribute to the combined limit (more information in <u>backup</u>):

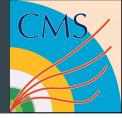
- Uncompressed region: dominated by Hadr WX analysis.
- Compressed region: 2/3l soft analysis (≥3l) in the WZ
 (WH) models.
- Expected limit significantly improved with respect to the 2016 combination


Search	Gau	gino
Search	WZ	WH
2/3ℓ soft	1	
2ℓ on-Z	1	
2ℓ non-res.		
≥3ℓ	1	1
1ℓ2b		1
4b		
Hadr. WX	1	1

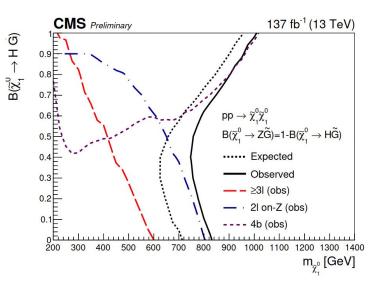

Chargino/neutralino production in WZ/WH final states Compressed

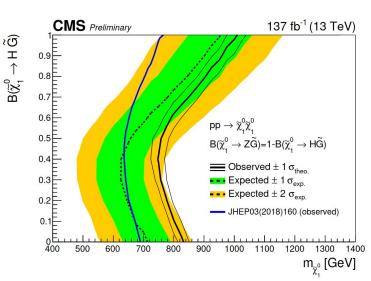


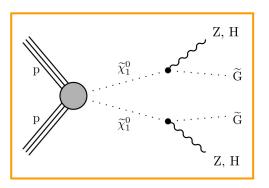
More challenging → Required full Run2 data as well as novel techniques


- ≥ 2/3l soft and ≥3l analyses complement each other.
 - Orthogonal lepton p_T
 - Different discriminant variables
- Expected limits close gap at Δm~40 GeV, where a mild (2σ) excess is found

Chargino/neutralino production in GMSB models



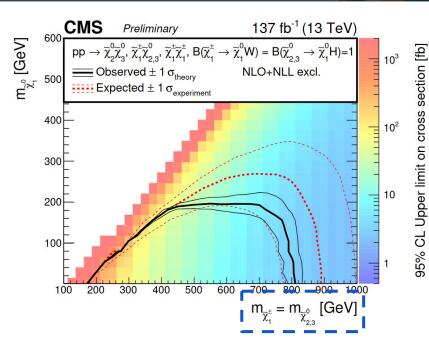

In GMSB models, χ_1^{\pm} , χ_1^{0} and χ_2^{0} have minimal mass splitting:

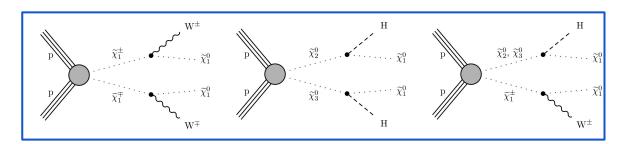

- Models can be reduced to χ_1^0 pair production, decaying to:
 - o Gravitino \tilde{G} with $m_{\tilde{G}}$ =1 GeV (LSP)
 - o SM neutral boson (Z or H)

- o **4b** analysis more sensitive at large $B(\chi_1^0 \rightarrow H\tilde{G})$
- o Small B($\chi_1^0 \rightarrow H\tilde{G}$) dominated by **2l on Z** analysis

	Search		GMSI	3	
	Search	ZZ	ZH	НН	
	$2/3\ell$ soft				
Ī	2ℓ on-Z	1	1		
_	2ℓ non-res.				Ľ
ī	≥3ℓ	1	1	1	
_	1 <i>ℓ</i> 2b				
ī	4b			1	
•	Hadr. WX				

Chargino/neutralino production in Higgsino-bino models


New interpretation wrt <u>JHEP04(2022)09</u>


- $\sim \chi_1^0$ as LSP, and a mass degenerate Higgsino triplet:
- Target either WW, HH or WH final states with:

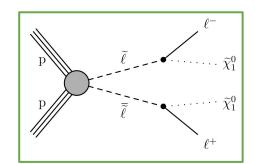
$$\circ$$
 B($\chi_1^{\pm} \to W \chi_1^{0}$) = 100%

$$o B(\chi_{23}^0 \to H\chi_1^0) = 100\%$$

More sensitive to the uncompressed phase space

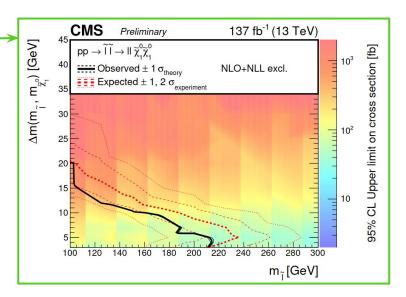
Search	Higg	gsino-l	oino
Search	WW	НН	WH
$2/3\ell$ soft			
2ℓ on-Z			
2ℓ non-res.			
≥3ℓ			✓
1ℓ2b			✓
4b		✓	
Hadr. WX	1		✓

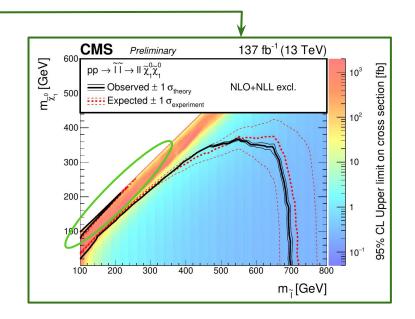
Slepton production



Particularly difficult due to their small cross sections.

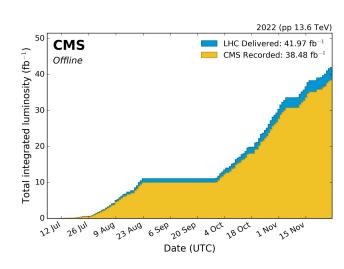
Slepton as Next to LSP with lightest neutralino as LSP


2/31 soft analysis targeting compressed signatures:

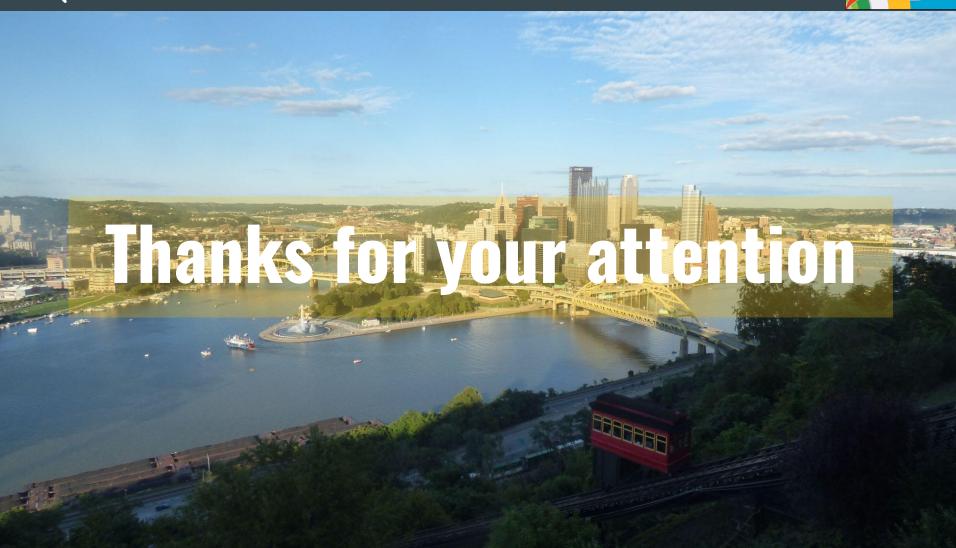

- o Similar SR as for Wino-bino interpretation
- o $m_{T2}(ll,\chi)$ as discriminant variable: $m_{T2}(\ell\ell,\chi) = \min_{\vec{p}_{T}^{miss}(1) + \vec{p}_{T}^{miss}(2) = \vec{p}_{T}^{miss}} \left[\max \left(M_{T}^{l}(m_{\chi}), M_{T}^{2}(m_{\chi}) \right) \right]$

21 non resonant used for non compressed scenario:

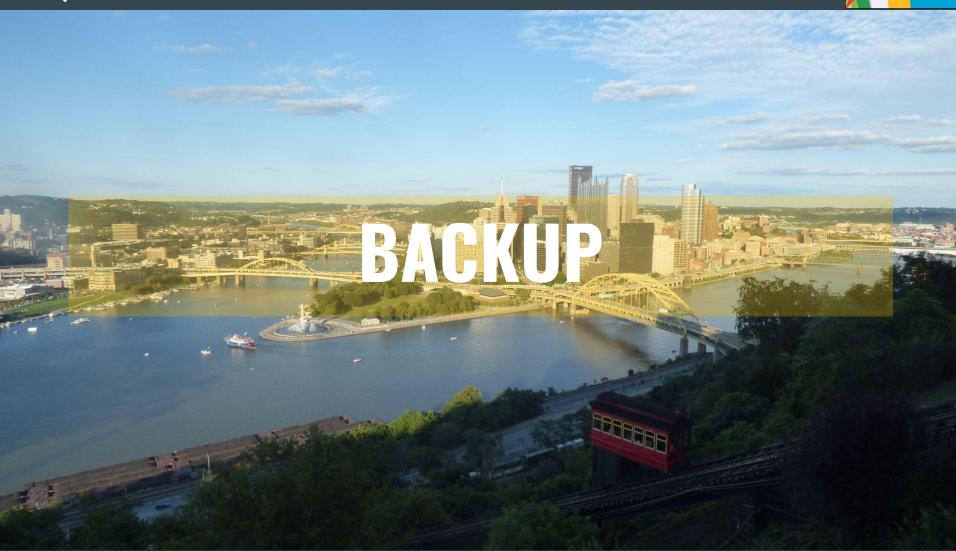
o Equivalent SR as before

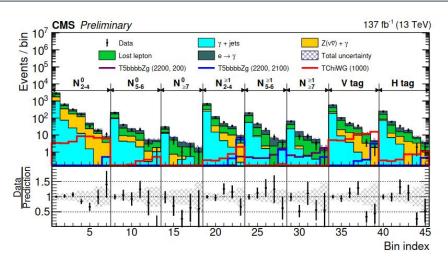


Summary and future prospects

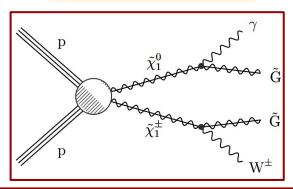

A combination of several EWK SUSY processes have been made.

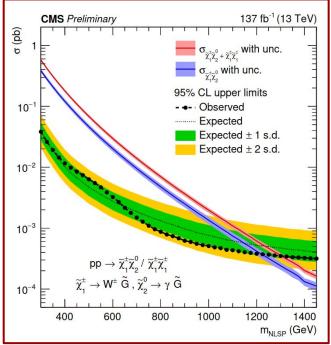
- ★ Both leptonic and hadronic signatures considered
- ★ Various phase spaces probed, ranging from compressed to high mass splittings.
- * More sensitivity and new models considered wrt previous combination
- ★ No significant deviations from expectation found
- ★ Chargino excluded up to 1 TeV, and Higgsino to 990 GeV
- ★ Slepton mass excluded up to 215 GeV for Δm=5 GeV and 110-720 GeV for Δm=50 GeV
- → But there always is hope!
- Current exclusions come under assumptions that could be proven wrong.
- Currently on Run-3 → more data (Expect ~3x
 more luminosity than Run-2!)
- New phase spaces will become available (compressed area, even more boosted scenarios...).





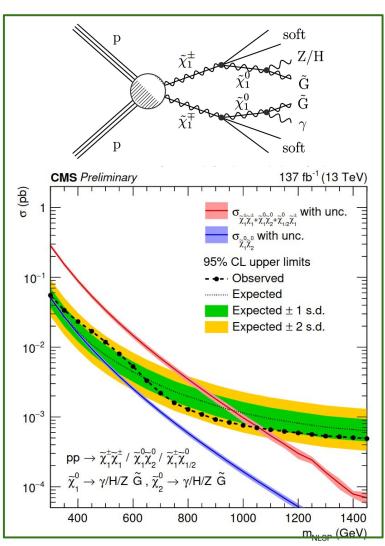
Search targeting final states with a photon, jets and large MET

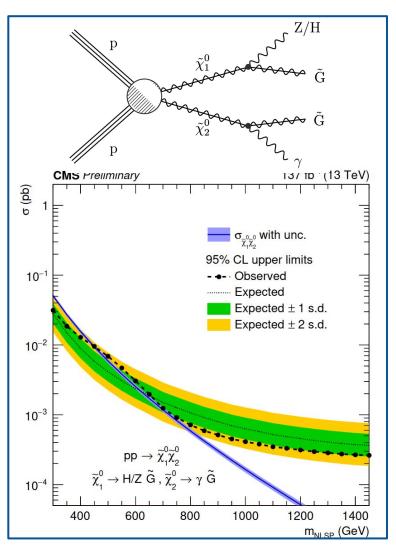



Analysis exploring gauge-mediated SUSY breaking (GMSB)

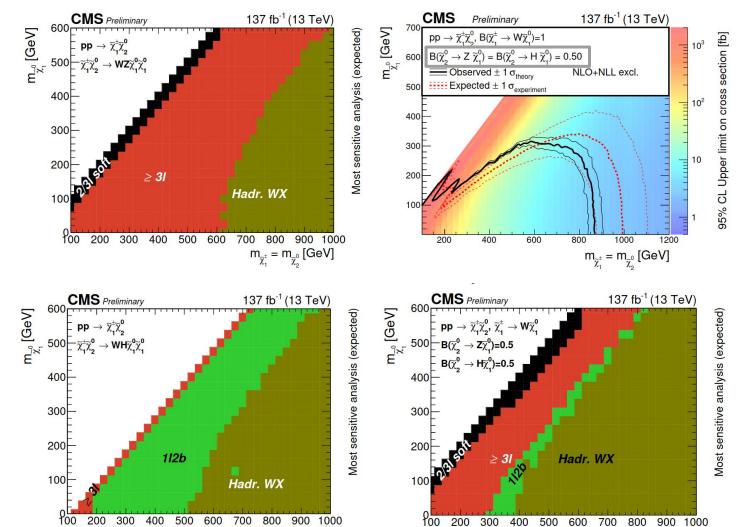
- Several EWK SUSY models considered, in final states with the gravitino as the LSP.
- Events selected with no leptons and at least 1 photon, two jets, large p_T^{miss} and large S_T : $S_T = \sum p_T + p_T^{\gamma}$
- Split in Signal Region (SRs) depending on the tagging of W/Z/H bosons, and further split in terms of p_T^{miss} and N_{iets}.
- Main backgrounds: Wγ+jets, ttγ+jets
 - o Estimated via data driven methods
- Chargino/neutralino masses excluded up to 1.3 TeV for the TChiWG model (more models in the <u>backup</u>)

CMS-PAS-SUS-21-009

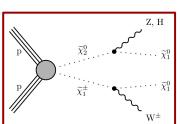



Search targeting final states with a photon, jets and large MET: Other models

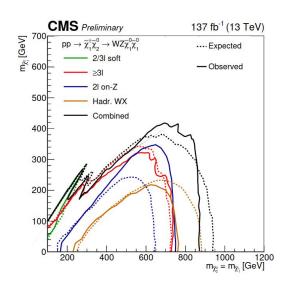
TChiNG model

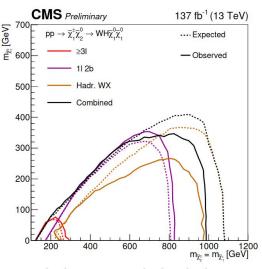


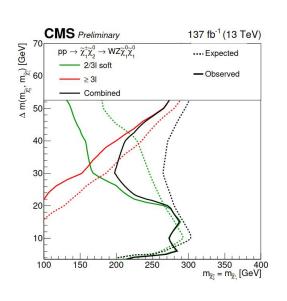
TChiNGnn model

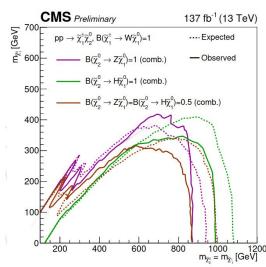


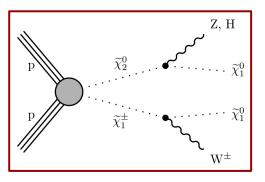
Chargino/neutralino production in WZ/WH final states: Best exclusion limit per mass point + additional interpretations

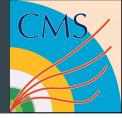

 $m_{\widetilde{\chi}_1^{\pm}} = m_{\widetilde{\chi}_2^0} \, [\text{GeV}]$




 $m_{\widetilde{\chi}_1^{\pm}} = m_{\widetilde{\chi}_2^0} \, [\text{GeV}]$


Chargino/neutralino production in WZ/WH final states: Exclusion contours





Search	Gau	igino		
Search	WZ	WH		
$2/3\ell$ soft	1			
2ℓ on-Z	1			
2ℓ non-res.				
$\geq 3\ell$	1	1		
1ℓ2b		1		
4b				
Hadr. WX	1	1		

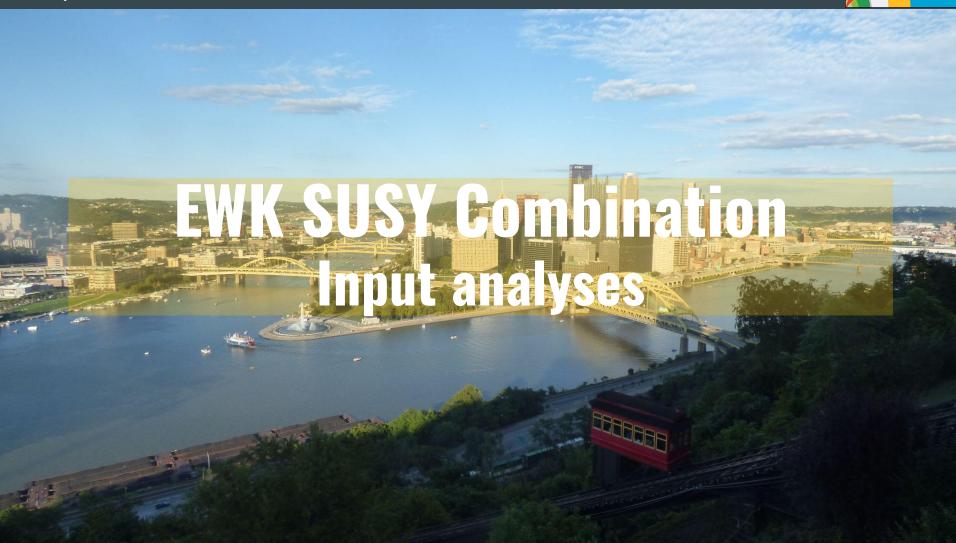
Event variables' definition

- \vdash H_T: scalar p_T sum of all jets.
- Transverse mass:

$$m_{\mathrm{T}} = \sqrt{2p_{\mathrm{T}}p_{\mathrm{T}}^{\mathrm{miss}}(1-\cos\Delta\phi)}$$

 \rightarrow m₁₂: Stransverse mass

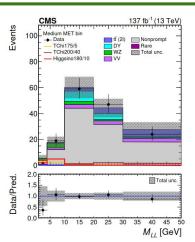
$$m_{\text{T2}} = \min_{\vec{p}_{\text{T}}^{X(1)} + \vec{p}_{\text{T}}^{X(2)} = \vec{p}_{\text{T}}^{\text{miss}}} \left[\max \left(m_{\text{T}}^{(1)}, m_{\text{T}}^{(2)} \right) \right]$$

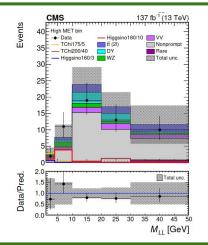

 $ightharpoonup m_{T2}(II,x)$ (slepton production in 2/31 soft lepton):

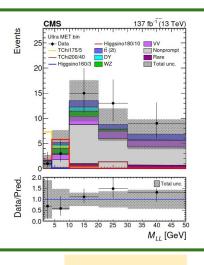
$$m_{\mathrm{T2}}(\ell\ell,\chi) = \min_{\vec{p}_{\mathrm{T}}^{\mathrm{miss}(1)} + \vec{p}_{\mathrm{T}}^{\mathrm{miss}(2)} = \vec{p}_{\mathrm{T}}^{\mathrm{miss}}} \left[\max \left(\mathbf{M}_{\mathrm{T}}^{1}(m_{\chi}), \mathbf{M}_{\mathrm{T}}^{2}(m_{\chi}) \right) \right]$$

d₀: the distance of closest approach in the transverse plane of the helical trajectory of the track with respect to the beam axis. +info here

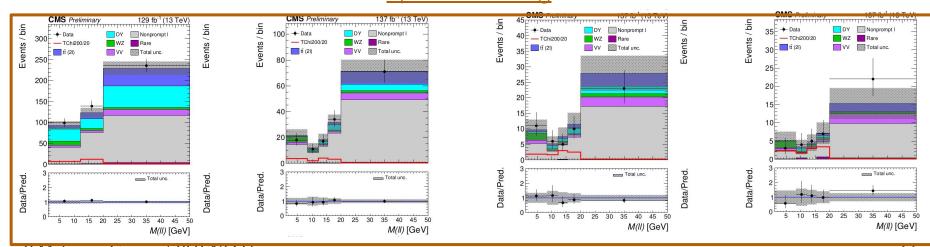





2/3l soft search: Binning change in 2l soft SR



JHEP04(2022)091

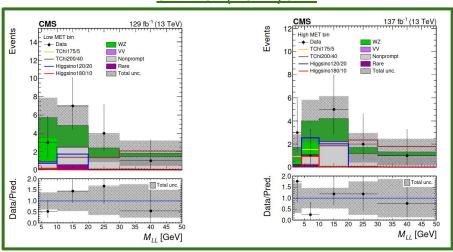

2l Low MET

21 med MET

2l high MET

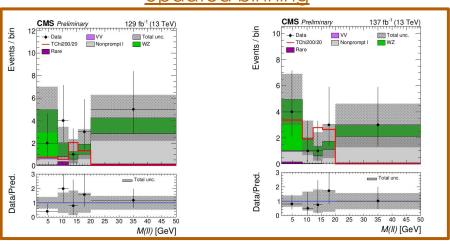
2l ultra MET

Updated binning

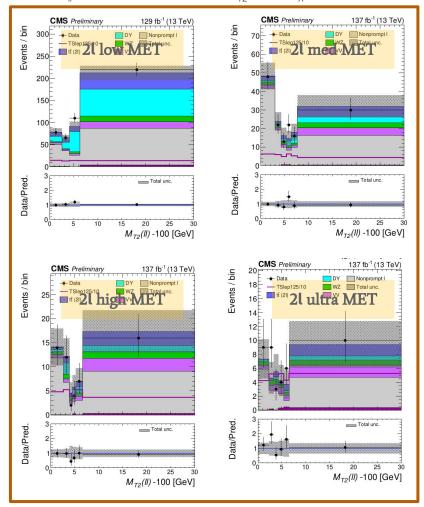


2/3l soft search:

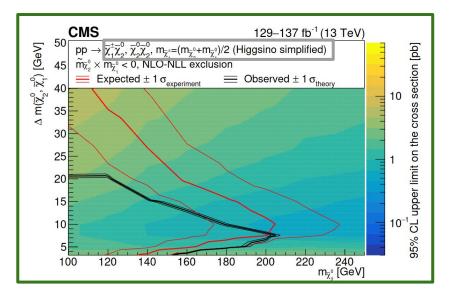
Binning change in 3I soft SR and binning for slepton production

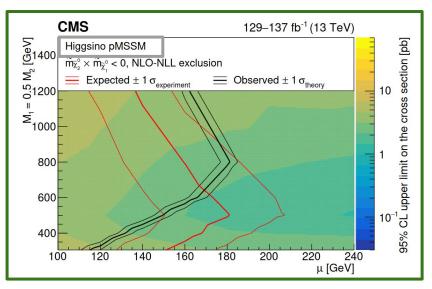

JHEP04(2022)091

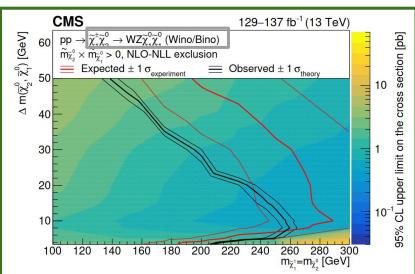
3l Low MET

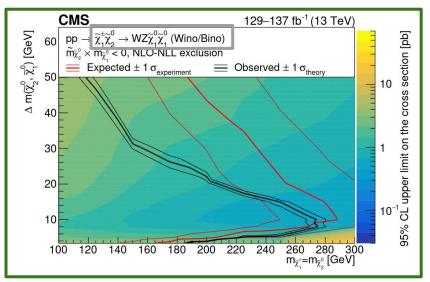

3l med MET

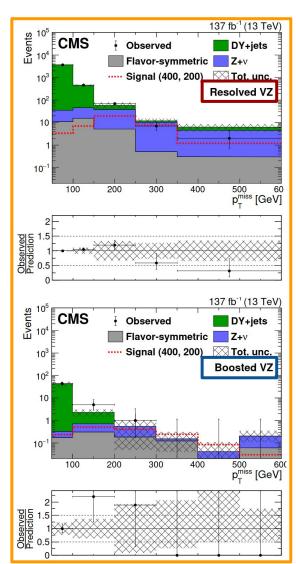
Updated binning

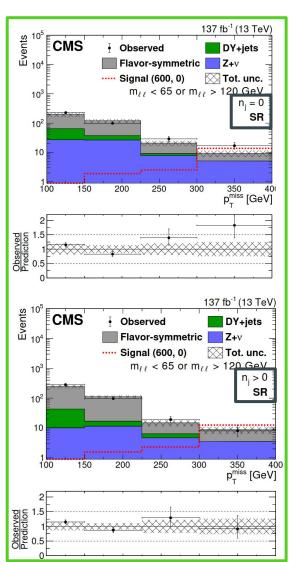

Binning for slepton production:


 M_{\parallel} not meaningful: use M_{T2} with M_{χ} =100 GeV



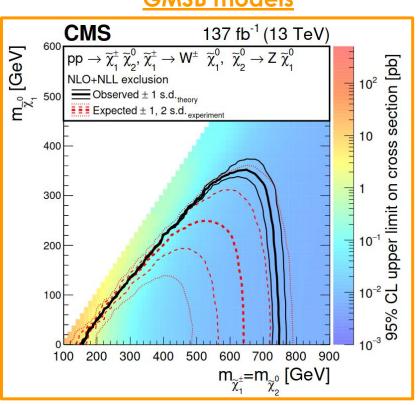

2/3l soft search: Expected & Observed limits (JHEP04(2022)091)

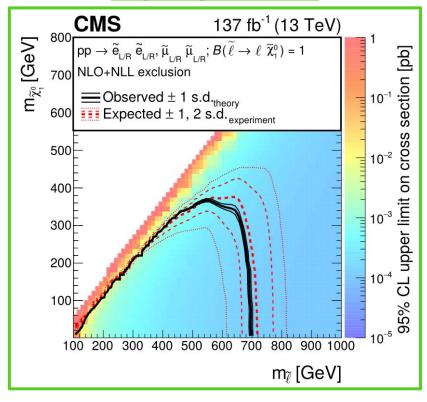



2l on Z/non resonant search: Signal region strategy (JHEP04(2021)123)

2l on-Z/non res: (Boosted)

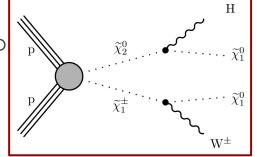
- Two OS SF leptons (ee/μμ), with SR split in terms of p_T^{miss}.
- off Z analysis (GMSM models): 20<m_{II}>65 GeV & m_{II}>120 GeV. SR split in resolved and boosted topologies
- on Z analysis (slepton production): 86<m_{II}<96 GeV, standard (AK4) & wider (AK8) jet reconstructions, further splitting in terms of jet content.



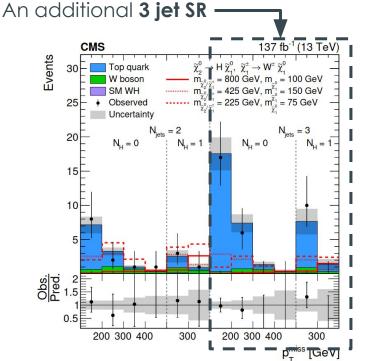

21 on Z/non resonant search: Expected & Observed limits (JHEP04(2021)123)

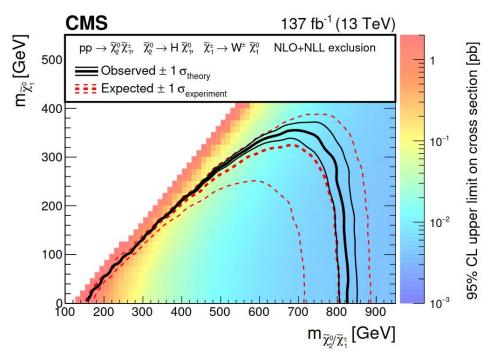
GMSB models

Slepton production


11 2b search:

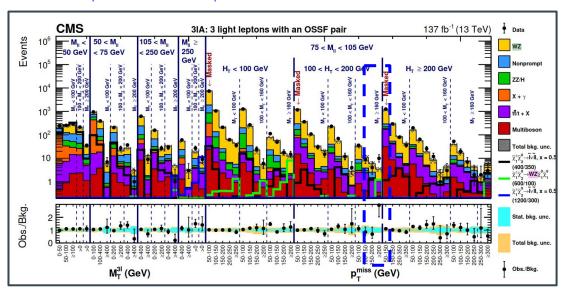
Signal selection and observed/expected limits (JHEP10(2021)045)

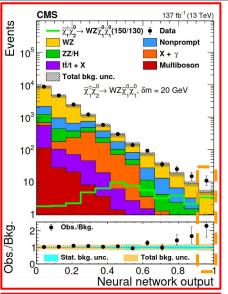

Targeting WH final states by selecting:

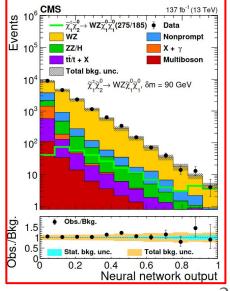

 $p_T^{11}>30$ GeV, 2 b-tagged jets consistent with the Higgs boso mass, and large p_T^{miss} .

Improvements wrt analysis using 2016 data (JHEP11(2017)029):

- Use of a booster tagger
- Higher p_T^{miss} binning

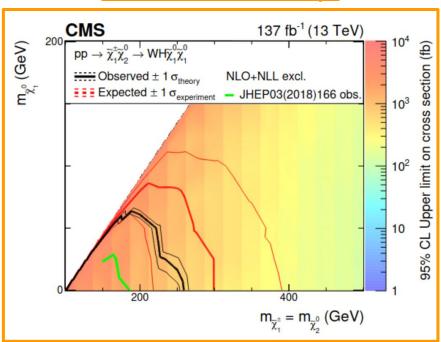



≥3l search: Signal selection (JHEP04(2022)147)

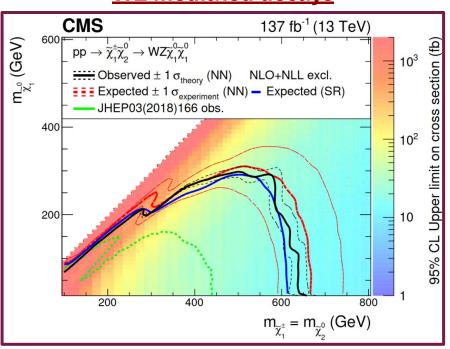


A search that targets neutralino production in diboson final states:

- 2l SS leptons (compressed region
- ightharpoonup 3l and 4l: up to 2 hadronic taus T_h .
 - o p_T^{l1}>25 GeV, p_T^{l2}>20 GeV
- Uses parametric neural networks (NN) with the mass splitting $(\Delta m = m_{NLSP} m_{LSP})$ as variable, trained per each signal hyptothesis.
 - o Gaining ~50 GeV wrt SR analysis
 - Mild excesses found at low Δm in the NN case and in bins of high p_T^{miss} and 100<H_T<200 GeV in the SR case



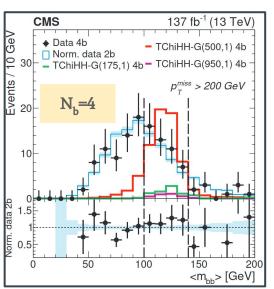
≥3l search: Observed/expected limits (JHEP04(2022)147)

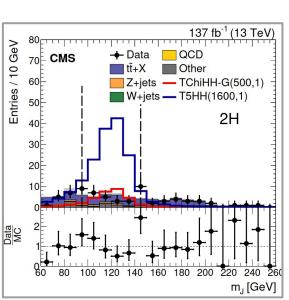


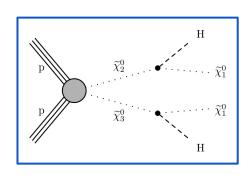
$\chi_1^{\pm}\chi_2^{0}$ production in:

WH mediated decays

WZ mediated decays

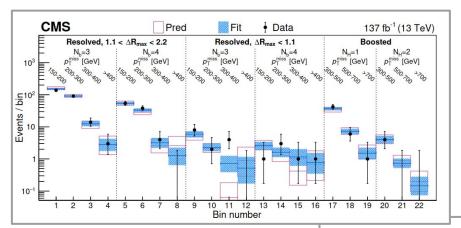


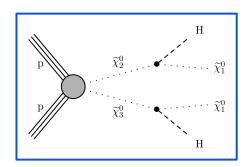

4b search: Signal selection (JHEP05(2022)014)

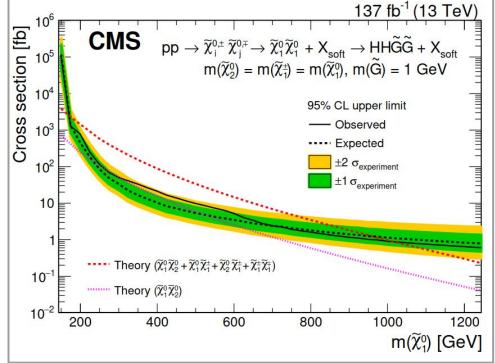


Targeting HH final states that considers both resolved and boosted scenarios, with no leptons

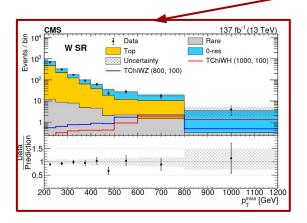
- Resolved scenario: 2 separate AK4 b-tagged jets.
 - o Signal extracted in terms of the $< m_{bb} > of$ the two b jets and N_{b-iets}
- Boosted scenario: 2b jets into an AK8 jet
 - o Signal extracted in terms of the AK8 mass $m_{_{\rm J}}$ and its $n_{_{\rm H}}$
- Main background, tt+X estimated with data driven ABCD method.

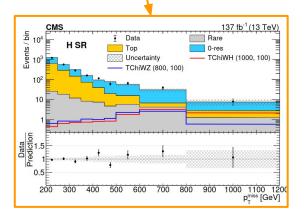


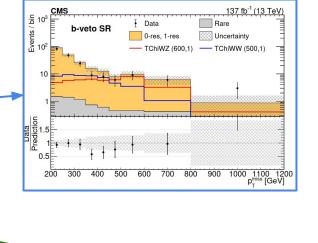


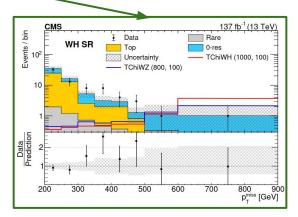


4b search: Observed/expected yields and limits (JHEP05(2022)014)

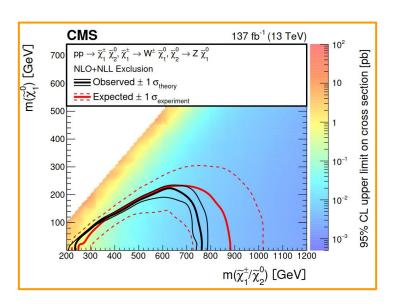

Hadr WX search:

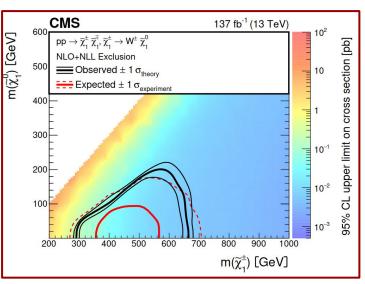

Signal strategy and observed/expected yields (2205.09597)

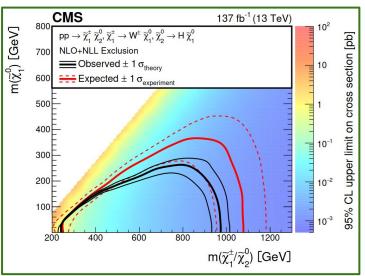



Hadr. WX: Fully hadronic final state

- At least 2 AK8 jets, compatible with W, Z and H bosons (Using machine learning algorithms).
- 2-6 AK4 jets
- Split in terms of b content:
 - B-Veto SR: AK8 jets with 65<m $_{J}<$ 105 GeV \rightarrow \geq 1 compatible with W and \geq 1 with W/Z.
 - B-Tag SR: Subsplit in terms of the tagging
 - AK8 jets compatible with W,H or WH, where H→bb.

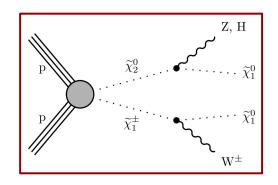


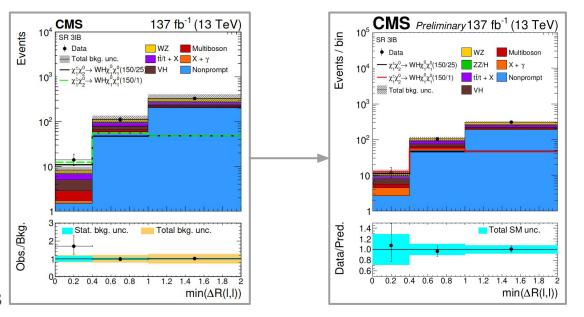

Hadr WX search: Observed/expected yields and limits (2205.09597)



Limits obtained for:

- $\sim \chi_1^{\pm}\chi_2^{0}$ decaying via **WW** bosons
- $\sim \chi_1^{\pm}\chi_2^{0}$ decaying via WZ bosons
- $\sim \chi_1^{\pm}\chi_2^{0}$ decaying via **WH** bosons


Electroweakino Combination: overlaps



CMS PAS SUS-21-008

Two big overlaps existing between 3l regions of 2/3l soft analysis, and those in the 3l categories in the ≥3l analysis:

- 31 WZ CR of 2/31 soft overlaps with the SR category of ≥3 I
 - → WZ CR removed from the fit, constrained through a nuisance parameter
- ► 3l soft SR (p_T^{11} <30 GeV) with ≥3l analysis (p_T^{11} >25 GeV)
 - → Updated the p_{τ}^{l} selection of ≥3l analysis,
 - \rightarrow Only slight changes in the sensitivity (highest in the compressed WZ, ~1-10% in 20< Δ m<70 GeV)

Combination strategy

Leptonic analyses:

- 2/3l soft: <u>JHEP04(2022)091</u>
- 2l on-Z/non res:
 - JHEP04(2021)123
- 3l: <u>JHEP04(2022)147</u>

Hadronic/Semihardronic analyses:

- ► 1l 2b : <u>JHEP10(2021)045</u>
- ► 4b: <u>JHEP05(2022)014</u>
- ► Hadr. WX: <u>2205.09597</u>

Search	Gaug	gino		GMSB	l l	Н	iggsino-bin	o	Sleptons
Search	WZ	WH	ZZ	ZH	НН	WW	HH	WH	$\ell^+\ell^-$
$2/3\ell$ soft	all								2ℓ soft
2ℓ on-Z	EW		EW	EW					
2ℓ non-res.	2								Slepton
> 20	SS,	SS,	11	11				SS,	
$\geq 3\ell$	A(NN)	A-F	all	all	all			A-F	
1ℓ2b		all						all	
	*1				-11		3-b, 4-b,		
4b					all		2-bb		
Hadr. WX	all	b-tag				b-veto		b-tag	