More Realistic Sensitivity Estimates for the Mailaia Detector

Jaipratap Grewal (work done with David Curtin)

What is MATHUSLA?

MAssive Timing Hodoscope for Ultra-Stable neutraL pArticles

- Proposed detector above CMS @ CERN to find Long Lived Particles (LLPs)
- Aims to reconstruct signals using Displaced Vertices (DVs)
- Addresses main LHC detector issues for LLP searches - trigger limitations and complex backgrounds (BG)
- Location at surface shields from QCD BG

Physics Objectives

- **Primary** O(10-100) GeV LLPs decaying hadronically e.g. $h \to XX$
- Secondary Low mass LLPs (includes all decays) e.g. SM+S, RHN
- Goal of our project: Previous sensitivity estimates (shown for $N_{obs}=4$) were done assuming perfect decay reconstruction efficiency we present updated plots taking into account the geometric acceptance of the detector for LLP decay final states.

3

LLP Signal calculation

Number of reconstructible decays for an LLP is given by

$$N_{obs} = (\mathcal{L}\sigma_{LLP} n_{LLP}) \otimes \xi_{LLP}^{geo} \otimes \bar{P}_{decay} \otimes \xi_{decay}^{geo} \otimes \epsilon_{recon}$$

- $\mathscr{L}\sigma_{ILP}n_{ILP}$: number of LLPs produced
- ξ_{IIP}^{geo} : fraction of **those** LLPs that pass through MATHUSLA
- $ar{P}_{decav}$: average probability for those LLPs to decay within MATHUSLA
- ξ_{decay}^{geo} : average geometric acceptance for final states of **those LLP decays** to hit sufficient sensor panes to be reconstructed as tracks and displaced vertices. **This could be a bottleneck for sensitivity if many charged decay products escape undetected through the wall, floor or detector gaps.**
- ϵ_{recon} : reconstruction efficiency for LLPs that pass those geometric criteria (close to 1)

Previous estimates assumed ξ_{decay}^{geo} = 1. We run more detailed simulations to obtain ξ_{decay}^{geo} for various LLP models.

Unreconstructible LLP Decays

MATHUSLA FastSIM

(extending work by Wentao Cui, Lillian Luo)

- highly customizable Python code that simulates the geometry of MATHUSLA sensor layers
- Very flexible: define a "param card" with any geometry, recon or trigger criteria
- Takes in LLP 4-vectors and returns ξ_{decay}^{geo} based on defined criteria, which can be used to get N_{obs} (assuming ϵ_{recon} = 1)
- Can also enable scintillator/spatial track resolution (if needed)

```
#Single track reconstruction criteria: TIGHT, LOOSE, TIGHT UPWARDS, etc.
#track recon criteria = name min num hits tracker planes(start indexing at 0)
                                                   Default track reconstruction criteria: tight
#first one is default
track recon criteria = tight 5 0,1,2,3,4,5,6,7,8
                                                     5 hits in any tracker planes
#subsequent ones
track recon criteria = medium 4 0,1,2,3,4,5,6,7,8
track recon criteria = loose 3 0,1,2,3,4,5,6,7,8
track recon criteria = floor 1 0,1
#Single track trigger criteria: #TIGHT, LOOSE, etc.
#track trigger criteria = name min num hits tracker planes(start indexing at 0) neighbourhood
                                                          Default trigger criteria: nearestneighbor
track trigger criteria = nearestneighbor 5 4,5,6,7,8 1
                                                            5 hits among ceiling trackers (4, 5, 6, 7, 8), within
#Vertex reconstruction criteria #TIGHT, LOOSE, etc.
                                                            3x3 tracker modules
#vertex recon criteria = name min num tracks1 track recon name1 min num tracks2 track recon name2 ...
                                                          Default vertex reconstruction criteria: DVtight2
vertex recon criteria = DVtight2 2 tight
vertex recon criteria = DVtight1medium1 1 tight 1 medium
                                                            2 tracks passing tight reconstruction criteria
vertex recon criteria = DVtightlloosel 1 tight 1 loose
vertex recon criteria = DVtight3 3 tight
vertex recon criteria = DVtight2medium1 2 tight 1 medium
vertex recon criteria = DVtight1medium2 1 tight 2 medium
vertex recon criteria = DVtight1loose2 1 tight 2 loose
vertex recon criteria = DVmedium3 3 medium
#Minimum particle momenta (MeV)
#min particle momenta = PID1, momentum1 PID2, momentum2 ... PIDn, momentumn
min particle momenta = 2212,600 211,200 321,400 11,200 13,200
```


Detector Geometry Details

- Modular construction 100m x 100m footprint with 100 9m x 9m detector units
- Detector units made up of 10 + 2 sensor planes (2 floor, 2 intermediate, 6 top and 2 front layers) provide position and timing coordinates of charged decays
- Floor and front layers help veto background from LHC
- Particle needs 4+ hits for reconstruction and 4+ hits within 3x3 module group for trigger

Geometry & Recon Criteria

used for obtaining updated estimates

- 1. MATHUSLA benchmark Geometry (100m x 100m)
- Floor layer: 10m x10m modules, no gap
- Other layers: 9m x 9m modules, 1m gap
- Front layers (vertical): span the entire height, no gaps
- 2. Reconstruction Criteria "DV2 (DV3)"
- 2+ (3+) charged tracks passing 4+ layers "recon"

top-down view

side view

Primary Physics Case: $h \rightarrow XX, X \rightarrow jj$

- Simulate LLP production and decay in MadGraph5 + Pythia8 + Delphes
- Obtained expected ξ_{decay}^{geo} ~ 70-80+% (increases with LLP mass)
- Doesn't vary much between DV2 and DV3 given high multiplicity - so we show DV3 data, which is highly BG resilient

Secondary Physics Case: SM + singlet scalar S

Consider SM + long-lived light scalar mixing with Higgs

$$\mathcal{L}_{scalar} = \mathcal{L}_{kin} - \frac{1}{2} \epsilon S^2 H^{\dagger} H + \frac{1}{2} \mu_S S^2 - \frac{\lambda_s}{4!} S^4 + \mu_H^2 H^{\dagger} H - \lambda_H \left(H^{\dagger} H \right)^2$$

• In the $\epsilon \to 1$ limit, obtain mixing between two scalars, $\sin \theta = \frac{\epsilon v_h v_s}{m_h^2 - m_s^2} + \mathcal{O}(\epsilon^3)$

Simulating LLP production and decay for FastSIM

- Produced in B-decays, used FONLL differential meson cross sections as B meson Monte Carlo generator, then decayed to LLP.
- S decays are tricky used Boiarska et al. (1904.10447) to get possible branching ratios to weigh different decay processes for S obtained via 2-body decays or MadGraph + Pythia (for masses above 0.7 GeV)

Secondary Physics Case: SM + singlet scalar S

• Obtained ξ_{DV2}^{geo} ~ **50**% (for low masses due to high collimation of the 2 final states; above 1 GeV due to hadronic decays turning on) and $\max \xi_{DV3}^{geo}$ ~ **40**% (once hadronic multibody decays turn on)

Key-point: MATHUSLA + FASER2 gives good coverage for mixing angles below projected LHCb sensitivity.

11

Secondary Physics Case: Right-Handed Neutrino (RHN)

Consider SM + long-lived Right Handed Neutrino (or Heavy Neutral Lepton)

$$\mathcal{L}_{ ext{vector}} = \mathcal{L}_{ ext{SM}} + \mathcal{L}_{ ext{DS}} + \sum F_{\alpha I}(\bar{L}_{\alpha}H)N_{I}$$

- The neutrino mixing is parametrized by the mixing angle $U_{\alpha I}=F_{\alpha I}/\sqrt{2}v$, where v is the Higgs vev.
- Assume $U_e=1, U_\mu=U_\tau=0$ (other benchmarks in progress)

Simulating LLP production and decay for FastSIM

- Produced in B- and D-meson decays, again use FONLL as Monte Carlo generator.
- Again hadronic decays in the GeV mass range have uncertainty. Used Bondarenko et al. (1805.08567) to get possible decays and branching ratios for RHN decays via MadGraph + Pythia (similar to SM+S)

Secondary Physics Case: Right-Handed Neutrino (RHN)

- Obtained ξ_{DV2}^{geo} ~ 50% above 0.5 GeV (once hadronic multi-body decays turned on) , ~10% for lower masses. ξ_{DV3}^{geo} ~ 20% above 0.5 GeV (4+ charged particle production threshold)
- Constraint is a little less sensitive than previous one in the Physics Beyond Colliders (PBC) report (1901.09966) might be because we used more realistic RHN production simulation.

Conclusions

- Reach is not significantly affected by the realistic geometric acceptances of the LLP decay products
- Even a search that requires 3-pronged DV (i.e. DV3 criteria) would still give good sensitivity
- This is welcome insurance, because while the collaboration expects zero background for 2-pronged DV search (DV2), the relevant background veto studies are still in progress, and the **DV3 search is even more robust against possible backgrounds.**