Searching for Heavy Neutral Leptons at A Future Muon Collider

Ariel Rock with Tsz Hong Kwok, Lingfeng Li, and Tao Liu

Based on 2301.05177

PHENO 2023

Heavy Neutral Leptons

JUNO Collaboration / JGU-Mainz

normal hierarchy (NH)

inverted hierarchy (IH)

Decades of evidence of neutrino oscillations and masses

Homestake, SuperK, SNO, KamLAND, Daya Bay, RENO, Double Chooz, MINOS, T2K, NOvA, IceCube ...

Generating Neutrino Masses

- How to introduce neutrino masses?
 - ♦ Lowest order using only SM fields, introduce d=5 Weinberg operator $-\frac{Y}{\Lambda} \left(\overline{L} \tilde{H} L^c H \right)$, Weinberg 1979

Minkowski 1977, Gell-Mann et al. 1979, Yanagida 1979, Mohapatra et al. 1980

- lacktriangle Type I Seesaw Weinberg operator descended from integrating out heavy sterile Majorana Neutrinos, $\Lambda=m_N$
- Effective Lagrangian

$$-\mathcal{L}_{\text{int,EW}} = \frac{g}{\sqrt{2}} W^{\mu +} \sum_{\ell=e}^{\tau} \left(\sum_{m=1}^{3} U_{\ell m}^{*} \bar{\nu}_{m} \gamma^{\mu} P_{L} \ell + \sum_{m=1}^{3} V_{\ell m}^{*} \bar{N}_{m}^{c} \gamma^{\mu} P_{L} \ell \right)$$
$$+ \frac{g}{2 \cos \theta_{W}} Z^{\mu} \sum_{\ell=e}^{\tau} \left(\sum_{m=1}^{3} U_{\ell m}^{*} \bar{\nu}_{m} \gamma^{\mu} P_{L} \nu_{\ell} + \sum_{m=1}^{3} V_{\ell m}^{*} \bar{N}_{m}^{c} \gamma^{\mu} P_{L} \nu_{\ell} \right) + h.c.$$

Neutrino Mixing

$$\nu_{\ell L} = \sum_{m=1}^{3} U_{\ell m} \nu_{mL} + \sum_{m'=1}^{3} V_{\ell m'} N_{m'L}^{c} \qquad \sim \sim_{W} \sim_{N_{i}}$$

Current and Future Bounds

Snowmass Energy Frontier: 2211.11084

Why Muon Collider?

Reduced Synchrotron Radiation

$$(m_e/m_\mu)^4 \approx (207)^{-4}$$

Muon Colliders are Gauge Boson Colliders

Higher Equivalent COM
Energy than Hadron
Colliders

Event Generation

◆ Events generated using WHIZARD 3

Kilian et al. 0708.4233, Moretti et al. hep-ph/ 0102195

- ◆ Includes Initial State Radiation (ISR)
 - New to WHIZARD 3 p_T recoil from ISR
- Using the FeynRules HeavyN models

Degrande et al. 1108.2040, Alloul et al. 1310.1921, Alva et al. 1411.7305, Degrande et al. 1602.06957, Atre et al. 0901.3589, Pascoli et al. 1812.08750

- Generated using $|V_{\ell}| = 0.002$
- HNLs decayed on-shell, using Narrow Width Approximation
- lacktriangle Consider two collider benchmarks $\sqrt{s}=3$ (10) TeV with L=1 (10) ${\rm ab}^{-1}$

Detector Simulation

Bierlich et al. 2203.11601

- After PYTHIA 8 showering, detector
 response simulated using DELPHES 3 DELPHES 3 Collaboration 1307.6346
- Fast, modular simulation build on "cards"
- We use the included Muon Collider Card
 - ◆ Hybrid of FCC-hh and CLIC detector cards
 Selvaggi 2020
 Roloff et. al 2018

Signal

Cross Section

TZ. Kwok, L.Li, T.Liu and AR 2301.05177

Total Process Cross Section (Production + Decay to $qq\ell$)

HKUST

Reconstruction

- At least 1 isolated $\ell = e, \mu$ candidate
 - $p_{T,\ell} > 0.5 \text{ GeV}$
 - $\sum_{\neq \ell} p_T/p_{T,\ell} < 0.2$ within cone of $\Delta R = 0.1$

- If $> 1 \ell$, choose largest $p_{T,\ell}$
- Reconstruct jet system J using VLC algorithm Boronat et al. 1404.4294
 - Single fat jet, $J = J_{\text{fat}}$, with $R = 1.2, \beta = \gamma = 1.0$
 - Or, two narrow jets $J=j_1+j_2$, with $R=0.2, \beta=\gamma=1.0$
- lacktriangle Choose method with invariant mass closest to m_W
 - ◆ Keep all jet information for use in BDT

Preselection

- Reconstructed events pass preselection if:
 - \bullet $p_{T,\ell,J} > 100 \text{ GeV}$
 - \bullet $|M_J m_W| < 5\Gamma_W$
- ullet Final HNL candidate is combination of J and ℓ TZ. Kwok, L.Li, T.Liu and AR 2301.05177

Reconstruction

TZ. Kwok, L.Li, T.Liu and AR 2301.05177

Signal m_N and total SM Background

BDT Variable Distributions (1/2)

BDT

BDT Variable Distributions (2/2)

BDT Results

Predicted Sensitivity

Conclusion and Outlook

- ◆ The origin of neutrino masses is a fundamental question in BSM Physics
- ◆ Future muon collider would be a clean EW Intensity and Energy Frontier, promising environment for BSM physics searches
- Find exclusion limits for HNL-SM mixing to be as low as $\mathcal{O}(10^{-6})$
- ◆ Further Work:
 - ◆ Include couplings to Taus
 - Non-uniform mixing
 - Other production channels and observables (Double VBF, SS dilepton...)

Backup

Reconstruction

Collider COM Energy	$\sqrt{s} = 3 \text{ TeV}$			$\sqrt{s} = 10 \text{ TeV}$		
Integrated Luminosity	$L = 1 \text{ ab}^{-1}$			$L = 10 \text{ ab}^{-1}$		
Process	σ (pb)	$N_{ m events}$	Eff. (%)	σ (pb)	$N_{ m events}$	Eff. (%)
$\mu^+\mu^- \to qq\ell\nu$	6.025	263400	4.373	9.534	932800	0.9784
$\mu^+\mu^- \to qq\ell\ell$	2.842	12160	0.4278	3.784	32090	0.0846
$\mu^+\mu^- \to qq\ell\ell\nu\nu$	0.02255	3201	14.20	0.07968	85100	10.68
$\mu^+\mu^- \to qq\ell\ell\ell\nu$	0.3133	90090	28.76	3.207	14950000	47.63
$\gamma\gamma o qq\ell u$	0.1589	5068	3.190	0.4274	113600	2.658
$\gamma \mu^\pm o qq\ell$	3.811	11390	0.2986	0.5823	21360	0.3668

TZ. Kwok, L.Li, T.Liu and AR 2301.05177

SM Background Yield and Total Reconstruction + Preselection Efficiency

HKUST

BDT Features

- ◆ Lepton
 - $lacktriangledown p_{T,\ell}$, η_ℓ , E_ℓ , Charge, and Flavor
- ◆ W-Jets
 - ullet p_{T,W_J} , $\;\eta_{W_J}$, and M_{W_J}
 - \bullet $E_{i1,2}$
- ♦ HNL
 - $lacktriangledown p_{T,N}$ and $p_{z,N}$
- **◆** Geometry
 - lacktriangledown $\Delta R(\ell,W_J)$ and $|\phi_\ell-\phi_{W_J}|$

Reconstruction

TZ. Kwok, L.Li, T.Liu and AR 2301.05177

 $m_N = m_{W_I + \ell}$ SM Background by Channel

Potential Timeline

Snowmass Muon Collider Forum Report: 2209.01318

