

Proton decay from quark and lepton compositeness

Benoît Assi

Pheno Symposium (U. Pittsburgh) - May 8, 2023

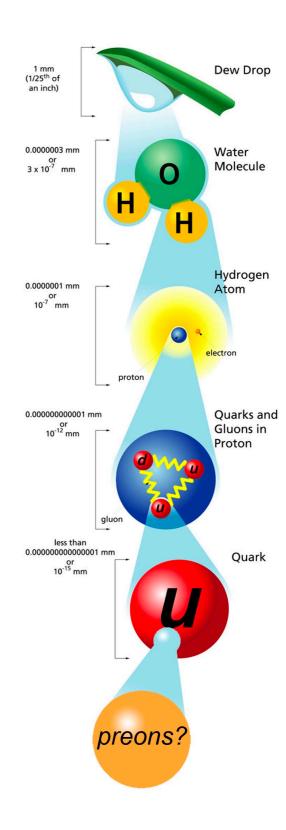
Based on: 2112.15132, 2211.02211 with Bogdan Dobrescu (Fermilab)

Substructure

Quark and lepton compositeness

Can we write down such a model?

Fermions in SM chiral \Rightarrow chiral composite dynamics


A spectrum of light bound states can arise

Model in a nutshell

Chiral preons charged under $SU(15)_p \times SM$ bind into prebaryons under $SU(15)_p$

Prebaryons include all 3 generations of SM matter and composite vector-like states

Higgs doublets are di-prebaryon bound states analogous to deuteron in QCD

Preons: from GUT scale to confinement

Fields charged under $SU(15)_p \times SO(10)$

field	spin	$SU(15)_{\rm p}$	$SO(10)_{\rm global}$	comments	
Ψ	1/2	15	16)	
$\overline{\psi_2,\psi_3,\psi_4}$	1/2	15	1	massless preons	
Ω	1/2	120	1	J	
\mathcal{A}	0	105	1	flavor-dependent couplings	

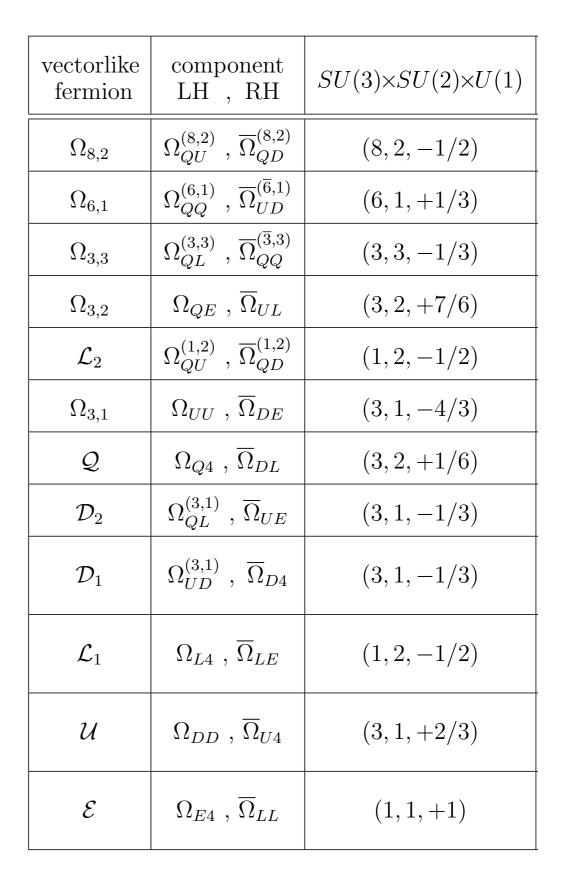
Preon states $(\Psi, \psi_{2,3,4}, \Omega)$ massless chiral fermions \Rightarrow chiral prebaryons can form

Fields charged under $SU(15)_p \times SM$


Fermi	ion	$SU(15)_{\rm p}$	$SU(3)_c \times SU(2)_W$	$U(1)_Y$
ψ_Q		15	(3,2)	+1/6
ψ_U		15	$(\overline{3},1)$	-2/3
ψ_D		15	$(\overline{3},1)$	+1/3
ψ_L		15	(1,2)	-1/2
ψ_E		15	(1,1)	+1
$\psi_1,,$	$\overline{\psi_4}$	15	(1,1)	0
Ω		120	(1,1)	0

Why this choice? An SU(N) gauge theory with (N+4) fundamentals has anomaly cancelled by a symmetric 2-tensor

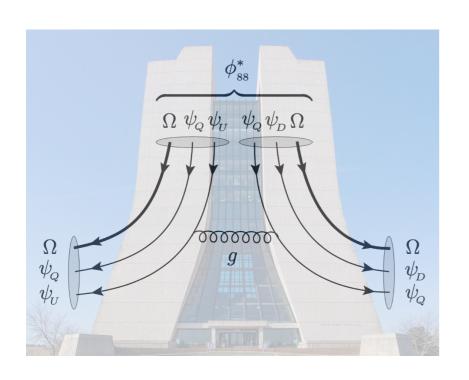
SO(10) symmetry breaking and re-labelling $\Psi \to \psi_{U,Q,E,D,1}$ where SM-singlet LH fermion $\psi_1 \leftrightarrow \psi_N$ is conjugate of RH neutrino

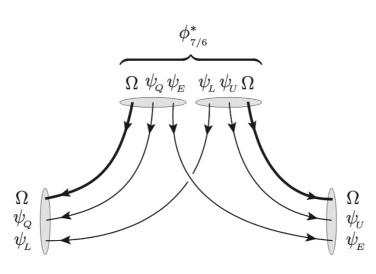

Confinement and prebaryons

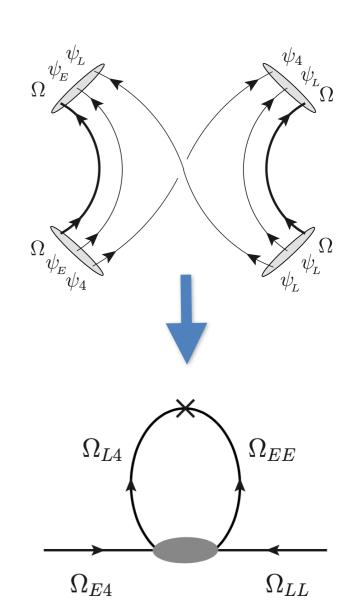
Fermion	$SU(15)_{\rm p}$	$SU(3)_c \times SU(2)_W$	$U(1)_Y$
ψ_Q	15	(3,2)	+1/6
ψ_U	15	$(\overline{3},1)$	-2/3
ψ_D	15	$(\overline{3},1)$	+1/3
ψ_L	15	(1,2)	-1/2
ψ_E	15	(1,1)	+1
$\psi_1,,\psi_4$	15	(1,1)	0
Ω	120	(1,1)	0

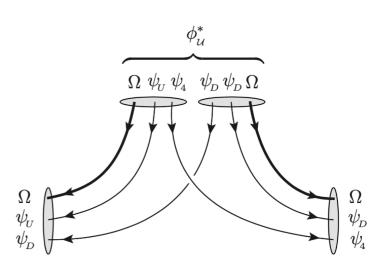
Bound states: **3 generations** of SM fermions $(\Omega_{Qi}, \Omega_{Li}, \Omega_{Ui}, \Omega_{Di}, \Omega_{Ei})$ and 12 vectorlike fermions charged under SM gauge group

6 gauge singlet Weil fermions $(\Omega_{ij}, \Omega_{Ni})$ and premesons $(\Psi \sigma^{\mu} \Psi, \Psi \sigma^{\mu} \psi_i, \psi_i \sigma^{\mu} \psi_i)$

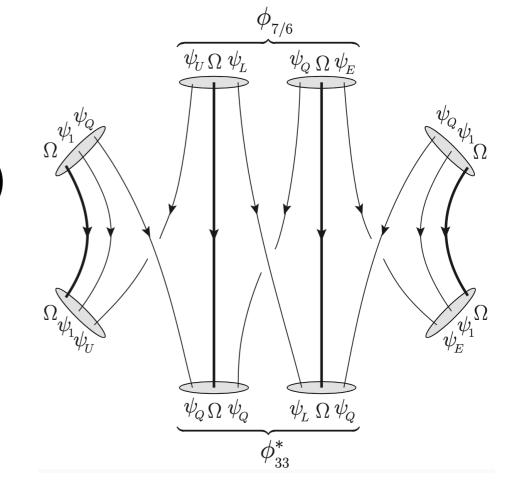



Higgs and other scalars


Di-prebaryons lighter than $\Lambda_{\rm pre}$ are bound by remnant SU(15), SM gauge and A exchange


Higgs: $H_{(u,d)}(1,2,\pm 1/2) \equiv \Omega_{(U,D)4}\Omega_{Q3}(1,2,\mp 1/2)$ give rise to up (down)-type quark masses

Deepest bound: (8,2,+1/2) with largest Dirac mass and Yukawa coupling $y_{88}\phi_{88}^*\Omega_{QU}^{(8,2)}\Omega_{QD}^{(8,2)}$



Compositeness and proton decay

Proton decay at $\Lambda_{\rm pre}$, e.g. **8-baryon operator**:

$$\frac{\tilde{C}_8}{\Lambda_{\mathrm{pre}}^8} \left(\Omega_{Q4} \Omega_{DL}\right) \left(\overline{\Omega}_{QQ}^{\bar{3},3} \overline{\Omega}_{QL}^{(3,3)}\right) \left(\Omega_{Q1} \Omega_{Q1}\right) \left(\overline{\Omega}_{D1} \overline{\Omega}_{41}\right)$$

$$\rightarrow \frac{\tilde{C}_8 c_{\phi}^2 y_{7/6} y_{33}^*}{2(4\pi)^4 \Lambda_{\text{pre}}^4} \phi_{7/6} \phi_{33}^{\dagger} (\Omega_{Q1} \Omega_{Q1}) (\overline{\Omega}_{U1} \overline{\Omega}_{E1})$$

Identifying prebaryons with SM fermions and **VEVs**:

$$C_8 c_{\phi}^2 \frac{m_{7/6}^2 m_{33}^2}{2(4\pi)^4 N^3 N_c^2 \Lambda_{\text{pre}}^4} (q_L^1 q_L^1) (\overline{u}^c \overline{e}^c)$$

Combining with latest super-K limit:

$$\tau(p \to \pi^0 e^+) > 1.6 \times 10^{34} \,\mathrm{yr} \Rightarrow \frac{\Lambda_{\mathrm{pre}}}{|C_8|^{1/4}} > 1.0 \times 10^4 \,\mathrm{TeV} \left(\frac{m_{7/6} m_{33}}{1 \,\mathrm{TeV}^2}\right)^{1/4}$$

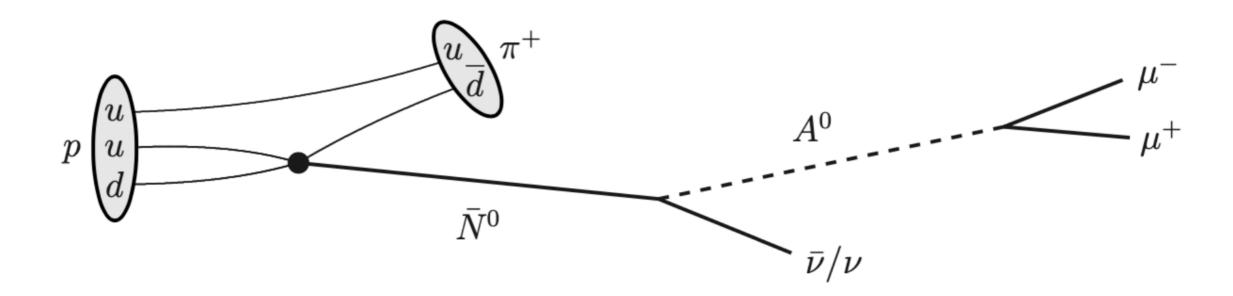
Novel baryon-number violating signatures

 Ω_{ij} RH neutrinos may be lighter than the proton \Rightarrow exotic decay modes:

$$p \to \bar{N}^0 \pi^+, p \to \bar{N}^0 K^+, n \to \bar{N}^0 \pi^0$$

Dominant decay $p \to \bar{N}^0 \pi^+$ for wide range of $m_N < m_p - m_{\pi^+}$ with operator:

$$\frac{\tilde{C}_{N}}{\Lambda_{\mathrm{pre}}^{8}}\left(\Omega_{Q4}\Omega_{DL}\right)\left(\overline{\Omega}_{QQ}^{\bar{3},3}\overline{\Omega}_{QL}^{(3,3)}\right)\left(\Omega_{Q1}\Omega_{Q1}\right)\left(\overline{\Omega}_{D1}\overline{\Omega}_{41}\right) \text{ with } \overline{\Omega}_{41} \equiv N_{R} \equiv \overline{N}_{0}$$


Inducing SM proton decay operator:

$$\frac{1}{M_{qqdN}^2} \left(u_L d_L \right) \left(d_R N_R \right) \text{ with } M_{qqdN} = \frac{16\pi^2 N^{3/2} N_c \Lambda_{\text{pre}}^2}{c_{\phi} (C_N m_{_{\varnothing}} m_{_{33}})^{1/2}}$$

Novel baryon-number violating signatures

Update search: $p\to \pi^+\bar\nu$ sensitive to the $p\to \pi^+\bar N_0$ decay with $m_N>100~{\rm MeV}$ may result in stable N^0 and B-violation

Future experiments: N^0 can decay within the detector \Rightarrow many final states within reach

Decay of $p \to \bar{N}^0 \pi^+$ followed by the decay $\bar{N}^0 \equiv \Omega_{41}$ to light pseudoscalar

Summary

Proposed chiral $SU(15)_p \times SM$ gauge theory in which preon confinement gives rise to exactly **3 generations** of SM prebaryons

Composite heavy vector-like fermions present with Higgs and heavy diprebaryons

Unique proton decay modes at confinement scale ⇒ **novel and exotic signatures**

Outlook

Improved understanding of strongly coupled chiral gauge theories

Grand unifying the model above the compositeness scale

Composite vectorlike fermions and scalars possibly within reach of LHC

Proton decay signatures searchable for at DUNE and SuperK detectors