New search strategies for exotic H→4b using vector boson fusion and photons

Phenomenology Symposium 2023

May 9, 2023

https://indico.cern.ch/event/1218225/contributions/5383838/

Ben Carlson, Steve Roche, Chris Hayes, Tae Min Hong

Based on PITT-PACC-2313 (check arXiv later this week)

Motivation

BSM Higgs decays to b-quarks are broadly motivated

- Renormalizable Higgs to pseudo-scalar (a) coupling, $g_a |H|^2 |a|^2$
- Large branching ratio to b-jets in 2HDM models if $m_a > 2 \cdot m_b$

Motivation: H→4b

Current ATLAS search 60% observed sensitivity for $m_a = 60 \text{ GeV} (Z \rightarrow \ell \ell)$

ATLAS JHEP 10 (2018) 031

Future benchmark:

HL-LHC: 20%

ILC: 10-4

Z. Lui, L.T. Wang, H. Zhang arXiv:1612.09284

D. Curin et al., Phys. Rev. D 90, 075004 (2014)

New proposed searches in VBF

Outline

1. Hadronic signature

- Why new triggers
- How to simulate

2. Analysis selections

- VBF tagger
- Higgs reconstruction tagger

3. Sensitivity

- Optimistic estimate
- Trigger variations

Why new triggers

H→4b very difficult to trigger (left)
Try VBF: large cross section motivates trigger (right)

 $VBF_{0\gamma}$, HR_{4b} , $\sqrt{s} = 13 \text{ TeV}$, 150 fb⁻¹

Perform detailed analysis to motivate new triggers

Event simulation

LHC pp collisions,
$$\sqrt{s} = 13 \text{ TeV}$$

Generated a total of 1.5 B events

Event generation (MadGraph)

- Signal and background matrix element generated with leading-order
- Parton shower performed with Pythia 8

Fast detector simulation (Delphes)

- Particle-level detector resolution and efficiency functions applied using the CMS card
- Jets reconstructed using anti- k_t algorithm with R = 0.4

Validation

- Reproduced jet energy resolution with ATLAS and CMS jet energy resolution to 10%
- Generated a small sample and validated analysis cut-flow with $\langle \mu \rangle = 50$, and found 20% agreement to neglecting pileup
- Compared jjbb (possible to generate) with jjjbb (too slow) and found reasonable agreement

Outline

1. Hadronic signature

- Why new triggers
- How to simulate

2. Analysis selections

- VBF tagger
- Higgs reconstruction tagger

3. Sensitivity

- Optimistic estimate
- Trigger variations

Vector boson fusion tagger

Energy deposits

Invisible decay

Hadronic activity (addition jets)

Eboli, Zeppenfeld, PLB 495 (2000)147

Jets recoil against Higgs (small $\Delta \phi$)

Jets back to back (ϕ)

BDT inputs

VBF jet variables: $\Delta \phi_{jj}$, $\Delta \eta_{jj}$, Δm_{jj} Jet variables: p_{T1} , p_{T2} , E_1 , E_2 ,

Leading/sub-leading

Analysis selection

$$N_{\rm jet} = 5.6$$

Highest m_{jj} jet pair: VBF jets

VBF BDT

No photon

$$N_{\gamma} = 0$$

3 b-jet

4 b-jet

$$N_{\gamma} = 1$$

3 b-jet

4 b-jet

$$HR_{3b}$$

 HR_{4b}

Two Higgs reconstruction (HR) channels

Higgs reconstruction

Classifier BDT trained for two separate categories

VBF (no photon)

Apply requirement on $O_{VBF} > 0.6$

Require $O_{3b/4b} > 0.6$

$$m_a = 50 \text{ GeV}$$
 $m_a = 50 \text{ GeV}$ $S = 2293, B = 2.5 \times 10^5$ $S = 295, B = 2.0 \times 10^4$

Large background, large signal

VBF + photon

Apply requirement on $O_{VBF} > 0.6$

Require $O_{3b/4b} > 0.6$

$$m_a = 50 \text{ GeV}$$
 $m_a = 50 \text{ GeV}$ $S = 41, B = 178$ $S = 5.2, B = 9.9$

Small background, small signal

Outline

1. Hadronic signature

- Why new triggers
- How to simulate

2. Analysis selections

- VBF tagger
- Higgs reconstruction tagger

3. Sensitivity

- Optimistic estimate
- Trigger variations

Mass discriminant

Apply $O_{VBF} > 0.6$ and $O_{3b/4b} > 0.6$

m	4h
	' +U

	Ny = 0		Ny = 1		
	4b	3b	4b	3b	
Sensitivity	2.1σ	4.6σ	1.7σ	3.1σ	
3 & 4b	5.1σ		3.5σ		
All channels	$6.1\sigma [BR(H\to 4b) < 33\%]$				

 $m_a = 50 \text{ GeV}$

Trigger variations

Significant gain in potential new triggers with BDT and cut-based

Up to 50% variation in photon p_T

Conclusions

BSM Higgs decays to b-quarks are broadly motivated

- Renormalizable, $g_a |H|^2 |a|^2$, connected to new physics
- Large branching ratio to b-jets

Estimated the sensitivity

- Accessible in Run 3 with new triggers
- Provided variety of trigger scans

With new triggers: sensitive within Run 3

For $m_a = 50$ GeV: 6σ sensitivity Br < 33%

Further sensitivity possible for the HL-LHC

Backup

4b projections

Z. Lui, L.T. Wang, H. Zhang arXiv:<u>1612.09284</u>

Decay	95% C.L. limit on Br						
Mode	LHC	HL-LHC	CEPC	ILC	FCC- ee		
₽ ⊤	0.23 [49, 50]	0.056 12-14	0.0028 16	0.0025 [17]	0.005 [18]		
$(bar{b}) + ot\!\!\!E_{ m T}$	_	[0.2]	1×10^{-4}	2×10^{-4}	5×10^{-5}		
$(jj) + E_{ m T}$	_	_	5×10^{-4}	5×10^{-4}	2×10^{-4}		
$(au^+ au^-)\!+\! ot\!\!\!/_{ m T}$	_	[1]	$8 \times 10^{-4} *$	1×10^{-3}	$3 \!\! ext{<} \! 10^{-4}$		
$bar{b}+ ot\!\!\!/ _{ m T}$	_	[0.2] [39]	3×10^{-4}	4×10^{-4}	1×10^{-4}		
$jj+E_{f T}$	_	_	5×10^{-4}	7×10^{-4}	2×10^{-4}		
$ au^+ au^-\!+\! ot\!$	_	_	8×10^{-4} *	1×10^{-3}	3×10^{-4}		
$(b\bar{b})(b\bar{b})$	1.7 [51]	(0.2)	4×10^{-4}	9×10^{-4}	3×10^{-4}		
$(car{c})(car{c})$	_	(0.2)	8×10^{-4}	1×10^{-3}	3×10^{-4}		
(jj)(jj)	_	[0.1]	1×10^{-3}	2×10^{-3}	7×10^{-4}		
$(bar{b})(au^+ au^-)$	[0.1]* [52]	[0.15]	4×10^{-4} *	6×10^{-4}	2×10^{-4}		
$(\tau^+\tau^-)(\tau^+\tau^-)$) [1.2]* <mark>53</mark>	$[0.2 \sim 0.4]$	1×10^{-4} *	2×10^{-4}	5×10^{-5}		
$(jj)(\gamma\gamma)$	_	[0.01]	1×10^{-4}	2×10^{-4}	3×10^{-5}		
$(\gamma\gamma)(\gamma\gamma)$	$[7 \times 10^{-3}]$ [54]	4×10 ⁻⁴ *	1×10 ⁻⁴	1×10 ⁻⁴	3×10 ⁻⁵		

Previous studies in VBF

N. Bomark, S. Moretti, L. Roszkowski 1503.04228

Matrix element for jjbb

frage mismanely wardispressantightic.

frage my manely wardcapus_auctobill C.

Sensitivity comparison

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-008/