Searching for a fifth force with atomic and nuclear clocks

with Zackaria Chacko, Abhish Dev, Ina Flood and Anson Hook arXiv: 2207.14310

Dawid Brzeminski (UMD), PHENO 2023, 5/8/2023

Properties of generic scalar interaction

If linearly coupled to the SM, expect $\mathscr{L} \supset \kappa \phi \left[\frac{d_e}{4e^2} F^2 + d_{m_e} m_e \bar{e}e + \cdots \right]$

Couplings don't need to be the same -> EP violation

Testing the new force

[Source: John Lienhard]

A natural way to look for these interactions is to compare accelerations of two test masses of different chemical compositions

3

MICROSCOPE

$$\eta = \frac{2(a_A - a_B)}{a_A + a_B} \lesssim 10^{-15}$$

$$m_{\phi} \lesssim 10^{-14} \text{ eV}$$

How clocks enter the picture?

• We can rewrite Lagrangian as
$$\mathcal{L}\supset\kappa\phi\left[\frac{d_e}{4e^2}F^2+d_{m_e}m_e\bar{e}e+\cdots\right]=\frac{1}{4e(\phi)^2}F^2+m_e(\phi)\bar{e}e+\cdots$$

- Background value of ϕ affects fundamental parameters such as fine structure constant α , electron mass m_{ρ} , etc.
- Energy levels in atoms are sensitive to these changes.
- We can compare energies of two clock transitions to look for them

Scalar field background

The most compelling background is due to the scalar being the DM

$$\phi(t) = \sqrt{\frac{\rho}{2m_{\phi}^2}} \cos m_{\phi} t$$

 This naturally leads to the variation of the fundamental parameters with the same frequency

$$\alpha(t) = \alpha_0 + \delta\alpha\cos(m_{\phi}t) \qquad m_e(t) = m_e + \delta m_e\cos(m_{\phi}t)$$

DM Bounds

7

DM Bounds

3

Can we get DM independent results with clocks?

Scalar field background II

- $\mathscr{L}\supset\kappa\phi\left[\frac{d_e}{4e^2}F^2+d_{m_e}m_e\bar{e}e+\cdots\right]$ means that every macroscopic body sources the scalar field
- . E.g. around earth or sun we expect $\phi = -\frac{q}{4\pi r}e^{-m_\phi r}\propto Ue^{-m_\phi r}$
- . Similarly for the fundamental parameters $\frac{\delta \alpha}{\alpha} \propto U e^{-m_\phi r}, \frac{\delta m_e}{m_e} \propto U e^{-m_\phi r}$
- The idea is to exploit the spatial variation of these parameters

Measuring the background

• Earth based: seasonal change of fundamental parameters

• Space based: eccentric orbit around earth, transit towards sun

Experimental prospects

Conclusions

- Experiments involving atomic or nuclear clocks can be used to look for a fifth force without assuming DM background
- In about a decade, earth based optical clock experiments can reach sensitivity of MICROSCOPE
- Nuclear clocks have potential to significantly improve fifth force constraints

Thank you!